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Abstract 
 
 

Content-Aware Interaction in User Interfaces 

Edward Waguih Ishak 

Whether interacting with a mobile phone or a wall-sized display, users often encounter 
screen space limitations that prevent the simultaneous display of all visual objects 
required to complete a task. Depending on the individual user and their current task, 
screen space limitations result from several factors, including insufficient physical space 
and inadequate pixel resolution. A number of techniques have been created to address 
these limitations, including overlapping semi-transparent windows, scrolling, and layout 
management. However, these techniques are typically designed to be generic and do not 
consider the properties of the content to which they are applied. In this thesis, we present 
an approach to making user interfaces content-aware by augmenting existing interaction 
techniques. By content-aware, we mean that they take into account various physical and 
semantic attributes of the content, such as size, location and type. 

We designed, implemented, and evaluated content-aware versions of three existing user 
interface techniques: content-aware transparency, content-aware scrolling, and content-
aware layout. Content-aware transparency applied to overlapping windows makes it 
possible for users to interact with otherwise hidden content by rendering important 
regions of windows opaque, and unimportant regions transparent, thus keeping overlaid 
contents legible and distinguishable at all times. Furthermore, based on properties of the 
overlapping material, appropriate image-processing filters are applied to obstructed 
content to help disambiguate the overlapping content. Content-aware scrolling allows a 
user to scroll along a system- or user-defined path within a document using conventional 
scrolling interactions, varying scrolling speed depending on content location. Content-
aware layout lays out windows containing content relevant to that of the currently 
focused screen area, positioned relative to that area. 

We present quantitative user performance data gathered from formal experiments, as well 
as qualitative questionnaire feedback to show that interaction with content-aware 
techniques can provide an effective advantage over techniques that are not content-aware. 
We also describe a testbed environment, called CASTLE, for browsing and searching 
textual notes, which explores how all three content-aware techniques can be coordinated.  
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Chapter 1  
 
Introduction 
 
1.1. Problem Statement 
Current computer processors make it possible for users to work on multiple tasks 
simultaneously. However, as the number of tasks increases, there is a corresponding 
decrease in the amount of available screen space dedicated to each task. Screen space 
limitations result from the space required for each task’s screen objects (e.g., windows, 
palettes, and icons), combined with size and resolution constraints imposed by the 
physical display devices on a user interface. Even if a user is working on just a single 
task, there may not be enough space for all objects associated with that task to be 
simultaneously visible, forcing the user (or in a semi-automated layout environment, the 
user together with the system) to choose a subset for display. As a result, some objects 
will become either partially or completely obstructed by other visual objects, may be 
iconified or moved off-screen, or may be scaled down in size so that their contents are 
rendered too small to be legible or are cropped by the edges of a window. The frequent 
need to eliminate content from display has given rise to a number of common user 
interface techniques for making hidden content visible, including uniform semi-
transparency (using alpha blending), conventional scrolling, and window layout. 
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1.1.1. Semi-transparency Using Alpha Blending 
Rendering overlaid objects as semi-transparent (through the use of alpha blending 
[Porter1984]) makes it possible to view at least partially the otherwise obstructed content 
that lies beneath them. Semi-transparency works well when overlapping contents are 
familiar and distinguishable, such that their alpha-blended appearance maintains their 
individual legibility and makes clear which objects contain them. A problem arises when 
overlapping contents are either unfamiliar or too similar in appearance, such that their 
alpha-blended appearance is either illegible or indistinguishable, as shown in Figure 1.1. 
This often prevents the perception of transparency, making it difficult for the user to 
perceive the overlapping contents as two distinct layers. 

With the use of semi-transparency, visible content may not always be directly accessible, 
as there may be obstructing semi-transparent objects in the way. Since each pixel may 
represent the blended representation of many overlapping objects, including the 
background, interacting with any object underneath the topmost object typically forces 
one to move or resize overlaid objects to ensure that the target content is not obstructed.  

 
Figure 1.1: A screenshot of a window rendered with nVidia's nView uniform semi-
transparency feature. The alpha-blended appearance of the overlaid and obstructed 
content produces several lines of illegible overlapping text. 

1.1.2. Conventional Scrolling and Panning 
Traditional scrollbars are conventionally used to navigate large information spaces on 
smaller screens. A conventional scrolling interface includes a viewport, which contains 
the visible portion of the entire scrollable content. Scrollbars, typically placed beneath (to 
scroll horizontally) and to the right of (to scroll vertically) the viewport, allow users to 
push visible content out of view, replacing it with off-screen content. When using 
scrollbars, scrolling in either direction can be done independently, but usually not 
simultaneously.  
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Many types of content, such as maps, tables, and multi-column text documents, require 
navigating in two dimensions. Applications, such as Adobe Reader and Google Local, 
allow users to pull hidden content into view from any direction. Typically performed with 
a mouse-down and drag within the viewport, visible content is directly pushed out of the 
way, and previously hidden content is pulled into the viewport and made visible. This 
kind of scrolling is also referred to as panning, and it works well for short distances, but 
is limited in that one pan gesture reveals hidden content equal to, at most, the longest 
dragging distance, or the diagonal of the rectangular viewport. To avoid this limitation, 
some systems allow the user to use a mouse or joystick to define a vector indicating the 
direction and speed of panning [Zhai1997]. However, this requires users to steer precisely 
along a particular path, which is often difficult to do when the destination within the 
document is not axis-aligned with the current position. Consider, for example, reading a 
multi-column, multi-page document on a mobile display, as shown in Figure 1.2. After 
reading the left column, a user must interrupt her reading task and navigate to the top of 
the next column to continue reading. 

 
Figure 1.2: Navigating along a non-linear path can be difficult, especially when the user 
must steer precisely in the desired direction. Reading a multi-column, multi-page 
document on small displays often requires an interruption when navigating between 
columns and pages. 

1.1.3. Window Layout 
Some window managers can automatically lay out all of a user’s non-minimized 
windows, such that every window is unobstructed. For example, since version 3.1, 
Microsoft Windows has allowed a user to automatically tile or cascade each window 
using a least-recently-used order. Apple’s Exposé [2] allows users to interact with any 
open window by scaling, tiling, and neatly rearranging all open windows (or all open 
windows of a particular application) at the press of a key, thus allowing a user to click on 
the scaled, tiled version of the window with which she wishes to interact. Upon selection, 
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Exposé then restores each window to its original size, location, and z-order, with the 
exception of the selected window, which moves to the front. However, tiling/cascading 
often resizes windows in addition to rearranging their positions (as shown in Figure 1.3), 
which may be undesirable by the user. Further, neither tiling/cascading nor Exposé allow 
a user to choose a subset of windows to rearrange based on their contents (e.g., windows 
containing content that matches a search query).  

 
Figure 1.3: Screenshot of a desktop in which all open windows are tiled by the system. 
While this makes every window visible, their system-defined aspect ratios and locations 
can be undesirable. 

1.2. Goal and Approach 
The goal of this thesis is to show how selected traditional interaction techniques can be 
modified to significantly improve interaction with documents, as well as to improve the 
overall user experience, by making those techniques content-aware.  We use the term 
content-aware to refer to a technique that takes into account characteristics of a 
document’s content to determine how the user interacts with it. 

We redefine the functionality of these existing interaction techniques based on various 
attributes of the content with which the user interacts. For example, consider 
conventional scrolling, which can be loosely defined as the act of sliding a document 
underneath the window of an insufficiently large display. This requires a user to control 
specifically where and how fast they are going, or more precisely, to provide two types of 
transfer input: position (i.e., zero order) and rate control (i.e., first order) [Zhai1997]. 
However, a document is normally treated as a single, flat layer of information, such that 
both position and rate control are uniform across the entire document, irrespective of its 
content. Furthermore, the input devices and widgets that are commonly used, while 
allowing a user to easily provide restricted position and rate control (e.g., strict up-and-
down scrolling using the vertical scrollbar restricts position control to changes in y only), 
often make it difficult to navigate a complex 2D path precisely within the document. The 
user input required to traverse such a path precisely can widely vary, depending on the 
content being viewed at the time. 
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Our approach considers the document’s content when determining how to perform a 
particular task effectively. For example, in the case of scrolling, when reading a 
document, we will show that the knowledge of various properties of the content, such as 
its location and order with respect to other content within the document, can allow the 
system to translate user input into the exact position and rate control inputs necessary to 
complete the task effectively. Content-aware scrolling maps the position control of a 1D 
input device into the position control of a possibly complicated 2D spatial control task, 
and allows a constant rate control of that device to automatically vary the scrolling speed, 
such that a user spends less time in unimportant parts (e.g., transitions between columns 
and pages) of the document. 

We have also designed and run a set of user studies that show that our content-aware 
interaction techniques can help users interact with documents more effectively than the 
original versions, and that users prefer the content-aware techniques.  

1.3. Contributions 
This thesis makes the following contributions: 

• Development and evaluation of content-aware transparency. Content-aware 
transparency (CAT), allows a user to interact with otherwise hidden content by 
varying the levels of transparency within different regions of a window. In our 
implementation, we render important regions opaque and unimportant regions 
transparent, with a smooth opaque-to-transparent gradient in between. Based on 
properties of the overlapping material, various image-processing filters are 
applied to obstructed content to help disambiguate the overlapping material. We 
designed, implemented, and evaluated a user interface that employs CAT. Our 
user study showed that participants were more effective with the use of CAT and 
also preferred user interfaces that employed CAT over ones that did not. We also 
developed a set of CAT interaction techniques that allow users to unambiguously 
interact with objects rendered with CAT: pop-through, focus filter, and mouse-
over pie menu. The pop-through technique allows a user to directly manipulate an 
obstructed object. The focus filter technique allows a user to temporarily restore 
obstructed image-processed content to its unfiltered form. The mouse-over pie 
menu technique allows a user to select an object to interact with from a pie menu 
of all objects that are currently under the mouse cursor’s position. 

• Development and evaluation of content-aware scrolling.  Content-aware scrolling 
(CAS) allows a user to scroll along a document path defined by the user or 
system, varying the direction, speed, and zoom of scrolling depending on the 
document’s content and the task at hand. We designed, implemented, and 
evaluated a user interface that employs CAS. Our CAS Document Viewer 
automatically extracts the reading path and search paths within text PDF 
documents, as well as the faces path within photographs containing people’s 
faces, and allows one to traverse these paths using traditional scrolling gestures 
(e.g., using the mouse scroll wheel). Our user study showed that participants 
greatly prefer using CAS to peruse unfamiliar documents. CAS also significantly 
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outperformed both traditional and vector (i.e., free) scrolling in short distance 
navigation tasks. 

• Development of content-aware layout. Content-aware layout (CAL) takes into 
consideration the contents of windows on a user’s desktop to determine if and 
where they should be placed on the screen by applying constraints to content 
within the windows, rather than to the windows’ bounds. We developed a testbed 
application to demonstrate how CAL could be useful when perusing text 
documents. When a user selects text within a window, CAL rearranges other 
windows containing that text, horizontally aligning the search results of those 
windows with the selected text. Similarly, a user can perform a search across all 
open windows, such that search results are horizontally aligned in the center of 
the screen. Portions of windows not containing search results are used as available 
screen space, such that windows can overlap without obstructing any search result 
in a neighboring window. 

• Development and informal evaluation of a content-aware user interface 
combining CAT, CAS, and CAL. CASTLE (Content-Aware Scrolling, 
Transparency, and Layout Environment) incorporates coordinated 
implementations of CAL, CAT, and CAS to help users visualize and interact with 
related information across multiple windows. Using CAL, similar content across 
multiple windows is horizontally aligned on the screen. Content that would 
otherwise be obscured can be seen through unimportant regions of an overlapping 
window using CAT. Users can scroll through search results within and between 
neighboring windows by simply using the mouse scroll wheel. Transitions within 
windows are performed using CAS, while transitions between windows are 
performed with CAL. In an informal study, physicians used CASTLE to peruse 
patient status notes and reported that they are able to make otherwise important 
inferences much more easily and quickly than with their current system. 

1.3.1. Content-Aware Transparency 
Many user interface scenarios contain overlapping windows. For example, maximized 
windows or full-screen applications utilize every pixel on the display, thereby obscuring 
all other content underneath them. Chapter 3 describes the development of content-aware 
transparency (CAT) [Ishak2004], a user interface technique that selectively varies the 
level of transparency within different regions of a window depending on a combination 
of overlapping content properties, as shown in Figure 1.4. To demonstrate our ideas, we 
implemented a CAT testbed application in which users can visualize text, thumbnails and 
full-size images within overlapping 2D windows. To maintain the legibility of overlaid 
content, our testbed uses application semantics to identify important window regions to 
be rendered opaque, and unimportant regions to be rendered transparent, with smooth 
opaque-to-transparent gradients in between them (see Section 3.4.2.1). This helps reduce 
interference resulting from rendering overlapping contents uniformly semi-transparent, 
which can leave overlaid contents illegible. Furthermore, our testbed uses the high-level 
type, estimated spatial frequency characterization, and colors of the content to determine 
whether image-processing filters should be applied to underlying content, and which kind 
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should be applied, to help users correctly identify the window that contains the content 
(see Section 3.4.2.2). 

 
Figure 1.4: Four overlapping windows rendered with our implementation of content-aware 
transparency. Levels of transparency are varied in the overlaid window based on the 
location of content. Image-processing filters are applied to underlying content based on 
the combination of overlapping content types. 

We have evaluated two different CAT implementations (see Section 3.6), both rendered 
with gradient transparency values varying from 0% (opaque) to 50% (semi-transparent) 
with one incorporating the additional use of desaturation and blur filters, against three 
other transparency techniques: traditional semi-transparency at 25%, at 50% (i.e., more 
transparent than at 25%), and at 50% combined with blurring of the underlying contents. 
In a task where participants were asked to identify whether a highlighted icon was in the 
top or bottom of two overlapping windows (where the icon was always positioned in the 
intersection of the overlap), we found that participants were able to correctly identify the 
containing window as quickly and accurately with our CAT implementations as with 
windows rendered with a 25% uniform semi-transparency value. Both of our CAT 
implementations, as well as semi-transparency at 25% significantly outperforming 
windows rendered with a 50% uniform semi-transparency value (both with and without 
blurring). This suggests that our CAT implementation affords the overall performance 
and accuracy benefits of less transparent windows, but with the added “see-through” 
advantages (within unimportant regions of windows) of more transparent windows. 

In the same study, the same participants were able to search for text within a window 
overlaid onto similar content (e.g., text onto text of the same font, size, style and color) 
significantly faster when using our CAT implementation than with the other techniques. 
A questionnaire given to participants in the search study also indicated that, overall, they 
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preferred using CAT and rated it easier to use, more satisfying, and more intuitive than 
the other techniques. 

We have also developed three interaction techniques for use with our CAT 
implementation (see Section 3.7). The pop-through technique allows a user to interact 
with objects seen through unimportant regions of overlaid windows. Surpassing a 
pressure threshold on a touchpad, or using a left-mouse down with a 500ms delay, an 
obstructed window directly below an overlaid window at the current mouse position 
“pops through” and is available for immediate interaction. The focus filter allows a user 
to temporarily restore filtered content to its original unfiltered form. This allows 
visualization of obscured content without first bringing it to focus or moving or resizing 
any window. The mouse-over pie menu presents a user with a list of window thumbnails 
representing the windows that contain a user-specified pixel location. By hovering one’s 
mouse over a particular thumbnail in that list, that window is immediately placed on top 
of all other windows and becomes focused for interaction. 

1.3.2. Content-Aware Scrolling 
When a user reads a multi-column, multi-page document within a smaller viewport, they 
are often interrupted by the need to scroll or pan between columns and pages. Chapter 4 
describes the development of content-aware scrolling (CAS) [Ishak2006], a technique 
that varies the speed, direction, and zoom of scrolling based on the properties of the 
content through which a user scrolls. For example, increasing the scrolling speed (or with 
the use of animations) within column and page transitions, users can spend less time in 
those unimportant regions when reading the document. In our CAS implementation, users 
can scroll along a system- or user-defined path using traditional scrolling gestures.  

To explore this concept, we developed a CAS document viewer that, upon opening a text-
based PDF document, automatically extracts lines of text along with their locations and 
dimensions, and constructs a reading path, as roughly shown overlaid onto the first page 
of a document in Figure 1.5. This path is continuous and connects different parts of the 
document. To allow users to easily peruse the document, we map this path to the CAS 
widget, which looks and feels like a traditional scrollbar, allowing one to use the mouse 
wheel or a secondary knob on the scrollbar track to continuously navigate along this path. 
For short regions along the path that serve as transitions between columns and pages (i.e., 
unimportant regions), we change the scroll-document distance mapping, a control-display 
ratio of the scroll knob’s distance to the document’s distance, such that users can more 
quickly scroll through these regions (see Section 4.3.2), as shown as black dots in Figure 
1.5. We automatically transition the viewer between longer unimportant regions using a 
slow-in, slow-out animation to reduce the time and effort normally required to precisely 
scroll between those regions, as shown as red dashes in Figure 1.4. 

An integrated search function constructs a search path that directly passes through each 
search result and maps this path to the scrollbar until the search is cancelled. As with the 
reading path, while traversing the search path, the scroll-document distance mapping can 
change depending on the relative distances between search results, or for substantially 
larger distances, the path is traversed using a slow-in, slow-out animation. Our viewer 
also supports the viewing of photographs, automatically creating a Hamiltonian path 
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through the faces of people in the photograph, which can be traversed like any other CAS 
path. 

 
Figure 1.5: Content-aware scrolling allows scrolling in the document reading path using a 
1D control input device, such as a mouse scroll wheel. The reading path is shown roughly 
as the overlaid arrow, where black dots indicate a small unimportant region (traversed 
with a different scrolling distance mapping) and red dashes indicate a large unimportant 
region (traversed with an animation). 

We designed and conducted a user study of our CAS implementation (see Section 4.6) by 
asking participants to both slowly peruse and quickly navigate through multi-column, 
multi-page text documents. We asked them to use each of three techniques: our CAS 
implementation, traditional scrolling, and vector (or free) scrolling, which allows the user 
to define a direction and speed of scrolling using the mouse cursor. The study participants 
greatly preferred our CAS implementation when perusing a document at a self-controlled 
pace, mentioning that the automatic transitions provided a richer user experience. In 
addition, our CAS implementation outperformed the other techniques when used to 
quickly navigate to nearby offscreen parts of the document. 

1.3.3. Content-Aware Layout 
Commercial window managers can automatically rearrange windows on a user’s desktop, 
but do so without taking into consideration the content within the window. Chapter 5 
describes the development of content-aware layout (CAL) [Ishak2007], a user interface 
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technique that determines if and how each window on a user’s desktop should be placed, 
depending on its content. Our testbed implementation of CAL uses scaling and animation 
techniques similar to Apple’s Exposé, such that layout operations are invoked on the 
press of a key. Each window’s state can be easily restored to its original size and position. 

When reading a document, a user may wish to view related contextual information in 
other windows. When a user selects any text within a window and invokes the layout-
peripheral command, CAL identifies all other open windows containing the selected text 
and peripherally rearranges them, such that every occurrence of that string is highlighted 
and the first occurrence in each window is horizontally aligned with the selected text in 
the focused window, as shown in Figure 1.6. By rearranging and highlighting the 
important parts of windows across a single horizontal axis, a user can quickly view all 
windows containing content similar to that selected in the focused window with a simple 
left-to-right scan. 

 
Figure 1.6: A user selects the text “angina” and invokes a layout-peripheral operation to 
search for it in all other open windows. CAL rearranges only those windows containing the 
search term, such that all the search terms are highlighted and horizontally aligned with 
the selected text. 

A user can also perform a search without first selecting text by invoking a search-and-
layout operation, which allows a user to first enter a search query. Upon pressing the 
“enter” key, windows that contain content matching the search query are rearranged, such 
that all the search terms are lined up horizontally in the center of the screen. 

CAL not only considers the window contents to decide which windows to rearrange, but 
also uses a constraint solver that applies constraints to the bounds of selected portions of 
the windows’ contents.  (In contrast, other work on constraint-based window 
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management has applied constraints only to the bounds of entire windows, rather than to 
their content.) CAL tries to constrain each window to be fully unobstructed. However, in 
case this is not possible, it takes advantage of unimportant regions of windows (i.e., those 
that do not contain search results) to allow neighboring windows to overlap each other 
without obstructing important regions (i.e., those that do contain search results). 

1.3.4. Content-Aware User Interface 
In Chapter 5, we also explore how our set of content-aware techniques can complement 
each other with the development of CASTLE (Content-Aware Scrolling, Transparency, 
and Layout Environment), a content-aware user interface that employs CAL, CAT, and 
CAS to allow users to visualize and interact effectively with information spread across 
multiple windows. CASTLE rearranges windows using CAL, horizontally aligning 
similar content within multiple windows with respect to the content location, rather than 
to the window bounds. 

To allow more content to be visible, CASTLE incorporates CAT, so that unimportant 
regions of a window can be seen through transparent overlaid regions of an overlapping 
window, as shown in Figure 1.7. It maintains the legibility of the overlaid important 
content (e.g., search results) by varying the transparency within those regions (i.e., 
important content is rendered opaque and unimportant content is rendered transparent, 
with a smooth gradient between them), while applying a Gaussian blur to underlying 
content to reduce interference. 

CASTLE also makes use of CAS to allow a user to scroll through all the search results of 
the rearranged windows using the mouse scroll wheel. By first placing the mouse cursor 
over one of the windows, the user rotates the mouse wheel to scroll through each search 
result within that window. As this happens, CASTLE uses CAS to transition between 
each result. When the last result of that window is reached, on a subsequent downward 
scroll, CASTLE uses CAL to rearrange the windows, such that the next window (or, on a 
subsequent upward scroll, the previous window) is placed in the current window’s 
location. Upon reaching the last result of the last window, CASTLE cycles back to the 
first result of the first window. This makes it possible to use the mouse wheel—a 1D 
rotational input device—to continuously navigate through every search result of every 
open window, a task that could normally require manual window resizing and 
repositioning operations and a separate search operation for each window.  

We have asked two physicians with whom we are collaborating at New York 
Presbyterian Hospital, to use CASTLE to peruse daily patient status notes, possibly 
written by them or by other doctors on previous days. Both with and without the use of 
CASTLE, they were both asked to search for a particular section within each dated note 
to report on a patient’s status over time. Using CASTLE, notes are searched and 
rearranged in chronological order (dates extracted from the note text) such that patient 
progress over time is easily observed. Physician feedback has shown that they can make 
certain inferences easier and quicker with CASTLE, which uses content-aware 
interaction techniques, than with tools that do not. 
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Figure 1.7: CASTLE allows a user to view and interact with search results across multiple 
windows. Overlaid window regions can expose otherwise obstructed unimportant content 
using CAT. Using the mouse wheel, users can scroll through all the search results within a 
document (using CAS) and across documents by rearranging the windows using CAL. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 2  
 
Content-Aware Defined 
 
In this chapter, we will define what it means for an interaction technique to be content-
aware, and explain why we selected particular interaction techniques and how we 
modified them to make them content-aware. 

2.1. Initial Motivation 
The motivation behind the concept of content-aware modifications to traditional 
techniques stemmed from development of what we originally called “free-space 
transparency” [Ishak2003]. Using relatively large and wide displays for software 
development of various software projects, we were writing code that produced user 
interface scenarios where lines of code varied widely in length, sometimes producing 
large regions of white (i.e., “negative”) space in between regions containing text, as 
shown in Figure 2.1. Making the entire window semi-transparent seemed like a viable 
solution, but ultimately the text was important, and therefore it needed to remain legible 
and uncompromised. However, it seemed potentially beneficial to make use of available 
“parts” of windows to visualize additional information. By rendering these “free” 
window regions semi-transparent, we could visualize content beneath them without 
compromising the appearance of the code in the occupied regions. However, the 
application of transparency had to be “smarter” than the traditional approach of applying 
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it uniformly to the whole window—it had to know where the important content lived 
within the window, in order for transparency to be applied selectively. This was the 
rationale behind our development of free-space transparency [Ishak2003], a precursor to 
content-aware transparency (described in Chapter 3). 

 
Figure 2.1: Writing and editing source code often produces substantial white space due to 
varying line lengths.  

2.2. “Not Content-Aware” by Example 
Before defining what it means for an interaction technique to be content-aware, it helps to 
understand what it means for a technique not to be content-aware. By looking at 
examples of existing techniques that are not content-aware, and by recognizing their 
drawbacks, we can determine how to significantly improve them. 

We begin by taking a closer look at a specific example of a technique that is not content-
aware—uniform semi-transparency. Semi-transparency (using alpha-blending) is 
available as a feature in almost every commercial window manager, and is typically 
applied uniformly to all pixels of an overlaid graphical object to allow a user to “see 
through” it. Conventionally, a graphical window or palette is made semi-transparent by 
assigning the same alpha component to each pixel making up that window, as shown in 
Figure 2.2a. It takes each pixel’s color and uniformly alpha-blends it with the contents of 
the frame buffer behind it, thus giving the appearance that an overlaid window transmits 
light from whatever is below (i.e., that the overlaid window is transparent). This 
technique, as just described in its conventional form, does not take into account any 
attributes of the content within the containing window. Given this property, we do not 
qualify it as being content-aware.  
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Figure 2.2: (a) 25% transparency level applied to the overlaid window (i.e., alpha-blending 
75% of the overlaid window’s color, handling each color channel separately, with 25% of 
the color of the contents of the frame buffer behind it) produces overlaid content that is 
difficult to read. (b) Decreasing the transparency of the overlaid window increases the 
legibility of the overlaid content, but makes the underlying content more illegible. (c) 
Increasing the transparency of the overlaid window decreases legibility of both the 
overlaid and underlying content. 

Many generic techniques, such as uniform semi-transparency, can be beneficial to user 
interaction, but can often produce unwanted visual results. Our goal in this thesis is to 
show that these drawbacks can be avoided if a technique knows something about the data 
to which it is applied. For example, the illegibility of overlaid window contents (resulting 
from interference with the contents of the frame buffer behind it) is a common side effect 
of traditional semi-transparency as it is generally used in commercial systems today. 

(a)

(b)

(c)
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However, certain physical characteristics of the overlapping contents, such as their 
relative locations or spatial frequencies, seem to deterministically reveal when these 
drawbacks will occur. To alleviate the illegibility problem just described, one approach is 
to uniformly modify the alpha value of the overlaid layer depending on what kind of 
content lies beneath it. Due to the high spatial frequency of the content, lowering the 
alpha value of the overlaid window (i.e., making it more opaque) produces more legible 
overlaid content, although it results in more illegible underlying content (e.g., Figure 
2.2b), which is arguably a desirable approach in this situation. On the other hand, raising 
the alpha value of the overlaid window (i.e., making it more transparent) results in both 
illegible overlaid and underlying contents (e.g., Figure 2.2c). 

Unfortunately, depending on the overlapping contents, there may be no single uniform 
alpha value that makes both the entirety of the overlaid window contents and parts of the 
underlying window contents sufficiently legible. However, this may be possible by 
varying the transparency across the overlaid window, and this variance may depend on 
the content within the window. 

2.3. Content-Aware Defined 
Modifying the alpha value based on the type of overlapping contents is an example of 
what we call a content-aware modification, or more generally, modifying the behavior of 
a technique depending on various properties of the content to which it is applied. For 
example, as we will show in Chapter 3, our content-aware modification to transparency 
varies the alpha value of an overlaid window depending on the location of overlaid 
content, amongst other properties. This allows parts of the overlaid window that do not 
contain content to be rendered more transparent than those that do, thus allowing 
otherwise obstructed material to be more legible. 

2.4. An Approach to Making a Technique Content-Aware 
In general, a content-aware modification to an interaction technique is meant to reduce 
the effects of particular drawbacks that negatively impact user performance when 
completing a task. For example, when searching for text within an overlaid window, the 
time it takes to search may be negatively impacted by uniform semi-transparency applied 
to that window (as compared to when the window is rendered fully opaque). This is 
because a sufficiently high transparency may allow content that lies beneath the window 
(e.g., text) to possibly interfere with the overlaid text, thus making it less legible and 
making it more difficult or impossible, to perform the search. Semi-transparency is useful 
in some cases, for example, to monitor dynamic underlying content, such as a progress 
bar for an internet download, that would otherwise be fully obstructed by an opaque 
overlaid window. However, this technique in its conventional form does not take into 
account whether an object lies beneath, or what potentially interfering qualities that 
object might have. For example, consider semi-transparency applied to the same text 
window, but now overlaid on top of a uniform white background. This may not 
negatively impact the user’s search performance due to minimal interference with the 
monochrome background. Furthermore, even if underlying textual content is placed 
beneath parts of the overlaid window that are not important to the user at a particular 
time, this also may not negatively impact the user’s search performance. In other words, 
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the negative impact on user performance when completing a task probably correlates to 
some deficiency in how important content is displayed.  

2.4.1. Being Importance-Aware 
For a technique to be made content-aware, it also needs to be made importance-aware; 
that is, it must be aware of what is important to the user at a particular time, given the 
current task. In a graphical user interface, physical regions of the screen, which we call 
important regions, should be identified, such that properties of the content within these 
regions help identify what causes the particular drawbacks, and how to correctly display 
the content to reduce the effects of those drawbacks.  

The entity (or entities) responsible for identifying these important regions can vary. For 
example, the rendering engine could automatically determine the location of white space, 
or some other textual patterns, and identify those regions to be unimportant. 
Alternatively, the user can explicitly identify important regions by selecting text with her 
mouse or keyboard, for example. Another possibility would be to have the application 
report what is important based on the task, while also taking input from the rendering 
engine or the user (or both). Our specific content-aware modifications take the third 
approach by having the application report to the interaction technique important regions 
in the form of a set of rectangles of arbitrary widths and heights that have various 
properties that describe the contents they contain. In our implementations, each of these 
regions is assigned a binary value of importance (i.e., important or not). 

2.4.2. Being Content-Aware 
In our content-aware modifications, once important regions have been determined, 
properties of these regions (and of the content within them) that contribute to the 
drawbacks are identified. For example, the technique could take into account the size, 
location, order of, and distance between important regions. The technique could also take 
into account visual properties of the content within these regions, such as its color or 
spatial frequency spectrum. It could also consider semantic properties of the content 
within these regions, such as the high-level type or the search result score of the content 
within these regions (e.g., during a search, how well the text within the important region 
matched the search query).  

2.4.3. The Display Model: Degree of Interest 
We then loosely follow an existing importance-aware display model that was introduced 
by George Furnas’s Generalized Fisheye Views [Furnas1986] to determine how to 
correctly display the content. He discussed that, given data to display and a certain task, 
local detail and global context could be provided based on a degree of interest function, 
which assigns a number to each point in an abstract structure defining how interested the 
user is in seeing that point. In our approach, the important regions’ content properties 
essentially assign numbers to points along a display or interaction domain. In other 
words, these properties determine what, when, or where to display the content, such that 
the identified drawbacks are alleviated.  

This dissertation will demonstrate a modification to three different techniques, each 
across a unique display or interaction domain, as described below: 
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• Our content-aware modification to transparency demonstrates how the legibility 
of overlapping material can be improved by varying the display of content across 
the appearance domain (in our implementation, we mean the color and alpha 
properties of pixels that make up that content) by taking into account its semantic 
and visual characteristics. This includes the location and size of important 
regions, as well as the combinations of colors, spatial frequency spectra, and high 
level types of the overlapping contents within those regions. In other words, we 
vary the transparency of (and possibly apply image-processing filters to) 
overlapping material to maintain its legibility and reduce interference. 

• Our content-aware modification to scrolling demonstrates how the performance of 
reading and search tasks within text documents can be improved by varying the 
display and the interaction of content across the temporal domain, based on the 
size, location, order of, and distance between important regions. For example, 
when reading a document, given a uniform scrolling gesture, we vary the speed at 
which offscreen content approaches the viewport and becomes visible. This 
allows important regions (e.g., parts of the document containing text) to remain 
visible within the viewport for a longer time than unimportant regions (e.g., parts 
of the document not containing text). 

• Our content-aware modification to layout demonstrates how the user experience 
can be improved when searching across and comparing multiple documents by 
varying the display of content across the spatial domain, based on the location 
and size of important regions. For example, when selecting text within a window, 
other open windows that also contain that text are repositioned on the screen, such 
that the parts of those windows that contain that text are aligned horizontally with 
the user’s selection. This provides an easier context switch between the selected 
text and the search results. 

2.5. Existing Content-Aware Techniques 
According to our definition, content-aware 2D interaction techniques exist in both 
conventional everyday uses, as well as in experimental systems. Consider, for example, 
conventional scrolling using the mouse wheel. Most systems have their default scroll 
wheel settings to advance “one line” per notch advancement (which can be changed in 
most systems). When scrolling through an image, “one line” may be undefined, but when 
scrolling through a text document, the viewer must know something about the content to 
correctly advance one line of text. This kind of interaction has to be content-aware on 
such a level that it knows the height of a line, as well as the line spacing, to correctly 
scroll through the document. 

Another example is the Table Lens [Rao1994]: a table-viewing application that uses a 
fisheye view [Furnas1986] to display tabular information. Unlike traditional spreadsheet 
applications that require manual resizing of table cells, the Table Lens uses importance 
levels of cells to determine its size, thus distorting its spatial layout. This allows many 
more cells to be displayed thus improving interaction. 
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In this dissertation, we modify existing 2D interaction techniques and make them 
content-aware. We will show that such a modification can significantly improve the 
functionality of existing techniques, improving user performance and user experience. 

2.6. Content-Aware vs. Context-Aware 
The use of the phrase “content-aware” is uncommon when describing 2D user interface 
interaction. A more commonly used adjective is context-aware. Therefore, it is important 
to understand the differences between these two terms within the “context” of this 
dissertation.  

Context-aware can refer to, amongst other things, the user scenario or task, as well as the 
system capabilities that surround the interaction. In essence, it is often defined not as the 
variables that directly involve the user’s interaction with content, but rather as the 
variables that complement this interaction. On the other hand, content-aware, by our 
definition, refers to having knowledge of the characteristics of the content itself, such as 
properties that describe, for example, its physical appearance. In other words, the content 
could be placed in a different context and its inherent characteristics may not change. 
More simply put, context-aware interaction incorporates information surrounding the 
conditions under which interaction with the content is occurring, whereas content-aware 
interaction incorporates information about the content itself.  

We do not (nor do we want to) claim that context-aware and content-aware knowledge 
fall into two mutually exclusive categories. While having knowledge of certain 
characteristics (e.g., the colors of the content) arguably makes one content-aware, and 
having knowledge of certain environment information (e.g., the physical location of the 
computer display on which the content is viewed) arguably makes one context-aware, it 
is those more ambiguously-categorized properties (e.g., size or position relative to other 
content, or to the screen) that cross the boundary between the two categories. 

Throughout this dissertation, we do not exclude such properties when defining what it 
means for a technique to be content-aware and when considering which properties would 
be useful in modifying the technique, but rather exploit them in any way to help improve 
interaction. The overall goal of this dissertation is to make interaction techniques more 
effective and to help users complete a task more efficiently (e.g., more quickly and/or 
accurately), as well as to improve the user experience. Our claim is that by being more 
aware of the content to which the technique is applied, this can be achieved, even if it 
requires making a technique context-aware in addition to content-aware. Furthermore, 
although we may refer to having knowledge of various content characteristics as being 
content-aware, we fully acknowledge that others may classify it as being context-aware. 



 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 3  
 
Content-Aware Transparency (CAT) 
 
To view or interact with the content of an obscured window in conventional window 
managers, users are often forced to resize or move the obscuring window. Some users try 
to bring the obscured window to the top through the use of “alt-tab” or Apple’s Exposé. 
Some window managers incorporate traditional alpha-blending to allow users to see 
through obscuring objects to visualize what lies beneath them [NVIDIA]. However, as 
we discuss later, overlapping contents often interfere with each other, rendering them 
illegible, or make it difficult to identify to which window they belong.   

In this chapter, we present content-aware transparency (CAT) [Ishak2004], an approach 
that selectively applies transparency to overlapping windows based on their content. CAT 
also modifies the appearance of content to help reduce the interference caused from 
overlapping contents. To demonstrate and evaluate our approach, we have designed and 
implemented a version of CAT that allows a user to make efficient use of screen space by 
rendering unimportant window regions transparent and important window regions 
opaque, with a smooth gradient between them. Furthermore, our implementation takes 
into account characteristics of the obscured and overlaid content and applies appropriate 
image-processing filters and gradients to further reduce content ambiguity, as shown in 
Figure 3.1. This attempts to guarantee that the important content of overlaid windows 
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will be readable at all times, while simultaneously exposing hidden content beneath the 
unimportant regions. 

We have evaluated our CAT implementation against other transparency techniques: 
uniform alpha-blending with alpha set to 25% (i.e., 75% opaque) and 50%, both with and 
without blurring of underlying contents. We found that in studies asking participants to 
either quickly identify in which overlapping window a target icon appeared, or to quickly 
search for specified text in an overlaid window, CAT afforded the performance benefits 
of the less transparent 25% alpha with the “see-through” benefits of the more transparent 
50% alpha. Also, six out of ten participants preferred CAT over any of the other 
techniques. 

We have also developed a set of interaction techniques for use with CAT. The pop-
though technique allows a user to interact with content beneath unimportant regions of an 
obscuring window without moving or resizing it. The focus filter is a “magic lens” 
[Bier1993] that allows a user to temporarily transform a filtered portion of obscured 
content to its original unfiltered form, clarifying the exposed content beneath an 
obscuring window. Finally, since any pixel may render information from multiple 
windows, we allow users to determine the window with which they will interact by using 
a mouse-over pie menu. 

 
Figure 3.1: Windows rendered (left) without, and (right) with content-aware transparency, 
exposing blurred hidden content underneath. 

3.1. Related Work 
To increase the amount of simultaneously visible content of overlapping windows, some 
systems have tried rendering the entire obscuring window semi-transparently 
[Colby1991, Harrison1995a, Lieberman1994]. This traditional use of semi-transparency 
(accomplished by uniformly alpha blending the window with the contents of the frame 
buffer behind it), allows a user to visualize content that is behind an obstructing window, 
but often makes it difficult to determine visually which content belongs to which 
window, and in extreme cases can render the overlapping content illegible. Multiblending 
[Baudisch2004a] addresses this issue by allowing the use of different blending functions 
for different visual features, such as luminance and high spatial frequency. It modifies the 
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blending process to enable the preservation of more relevant features—if necessary at the 
expense of reducing other, less relevant features. Although multiblending preserves the 
visibility of both background and foreground windows containing familiar contents, users 
may have difficulty understanding unfamiliar overlapping contents. Users may also have 
difficulty with similar appearing overlapping contents, especially text. Our CAT 
implementation takes a different approach by selectively rendering all important regions 
opaque. By preventing obscured content from showing through those important regions, 
CAT increases the legibility of even unfamiliar overlapping information. 

 
Figure 3.2: A Macintosh terminal window, rendered with an opaque foreground on a 40% 
transparent background, overlaid on a second terminal window with similar content. 
Ambiguity arises when obscured pixels are blended with background pixels that lie in 
between the pixels of overlaid content. 

In Macintosh OS X, a text-only terminal window can have an opaque text color rendered 
on a semi-transparent background color. The Macintosh Command-Tab menu uses the 
same approach, rendering opaque icons on a transparent background. Although this 
approach may produce more legible overlaid content than does uniform semi-
transparency, ambiguity can still arise when obscured pixels are blended with background 
pixels that lie in between the pixels of overlaid content, especially when the obscured 
pixels underneath are from content of the same type as the overlaid region above (e.g., 
text, in the case of the Macintosh terminal window, as shown in Figure 3.2). Harrison et 
al. [Harrison2001, Harrison1995a] introduced an anti-interference effect for the borders 
of opaque text of transparent overlaid windows, thus reducing the interference with 
obscured pixels. Paley [Paley2003] similarly shows how character outlining, combined 
with hue and font variation, motion, and antialiasing can contribute to improve overall 
readability of overlaid text. CAT generalizes Harrison et al.’s approach by applying an 
anti-interference opaque-to-transparent gradient around groups of objects, such that 
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window regions, whether or not they contain content, are correctly perceived as part of 
the same window, making the content more legible, unambiguous, and aesthetically 
pleasing, as explained in Section 3.4.2.1. 

3.2. A Perceptual Approach to Transparency 
We first summarize a perceptual model of transparency developed from research in 
psychophysics and psychology, to establish a psychophysical basis for our approach to 
designing an implementation of CAT. This helps us provide a foundation for our design, 
as well as show how our CAT implementation has distinct advantages over traditional 
alpha-blending implementations to help users understand when and how to perceptually 
discriminate among overlapping layers. More specifically, we will discuss the kinds of 
modifications that can be made to one or both of the overlapping layers to retain each 
layer’s individual legibility, as well as to reduce ambiguity in identifying to which 
container the content in each layer belongs. 

3.2.1. The Episcotister Model and X-junctions: When to Scission 
What is arguably the most influential theory of the perception of transparency was 
introduced by Fabio Metelli [Metelli1974], who based his theory on an episcotister, or a 
flat disc that has a sector (with relative area α) removed. If one rotates this disc at a 
sufficient speed on top of a bipartite surface with two halves A and B, with reflectances a 
and b, respectively, the disc appears to be semi-transparent, as shown in Figure 3.3.  

 
Figure 3.3 (based on a Figure in [Singh2002]): An episcotister (left) with an open sector 
with relative area α and reflectance t is placed in front of a background with two halves, 
each containing a distinct brightness value. When the episcotister is rotated sufficiently 
fast (right), it leads one to perceive that it is transparent. Metelli argued that the overlaid 
transparent region must preserve contrast polarity. In other words, if region A is darker 
than region B, then region P must be darker than region Q. 

Metelli used this model to formulate many equations to describe perceptual 
transparency—more specifically, when and how to scission (i.e., partition) overlapping 
layers. He argued that if region A is darker than region B, then region P must be darker 
than region Q, and vice versa. In other words, regions P and Q must preserve contrast 
polarity relative to regions A and B. Further, the difference in luminance between regions 
A and B must be greater than the difference in luminance between regions P and Q. This 
is known as the magnitude constraint. For many years, these constraints were used to 

A B A B 

P Q 

t 
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help determine when an observer begins to perceive transparent overlapping objects, and 
how to scission the layers.  

In the context of when to perceive transparency, Metelli’s contrast polarity constraint was 
further extended to help classify the relation of the four luminance values at X-junctions, 
which occur whenever the boundary of an overlaid semi-transparent object crosses a 
contour in the background, as shown in Figure 3.4 (image and caption taken from 
[Fleming2005]). Beck and Ivry [Beck1988] showed how the order of local luminance 
values at an X-junction can help determine whether or not an observer will perceive 
transparency amongst two overlapping objects with the assumption that the two layers are 
homogeneous in transmittance (i.e., opacity) and reflectance. By drawing line segments 
between the four adjacent areas at the X-junction in order of increasing luminance, only 
one of three configurations can be drawn: a Z (also referred to as S), C, or criss-cross 
configuration. 

As shown in Figure 3.4, Beck and Ivry explain that, in a Z (or S) configuration, either of 
the two objects will be perceived as transparent, while in a C configuration, only the 
rotated object will be perceived as transparent. Finally, in the criss-cross configuration, 
neither object will be perceived as transparent, all with some exceptions. One exception, 
for example is noted by Beck et al. [Beck1984] when they observed that strong figural 
groupings can allow overlapping objects to be perceived as transparent even though they 
may violate contrast polarity constraints. 

 
Figure 3.4: X-junctions occur where two contours intersect in the image. The ordinal 
relations between the intensities that form the junction determine which percepts are 
possible. The S-shaped ordering leads to a bistable percept in which either square can be 
seen as a transparent filter; the C-shaped ordering means that only the tilted square can 
be seen as transparent; the criss-cross ordering is inconsistent with either of the squares 
appearing transparent. (Image and caption taken from [Fleming2005].) 
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However, the model of perceptual transparency based on these constraints made the 
assumption that the X-junctions consisted of four distinct intensities. In many of today’s 
user interfaces, users are rarely presented with a scenario where either the transparent 
overlapping layer, or the background, is homogeneous in transmittance and reflectance. 
Rather, screen objects are often textured or contain a range of intensities and colors.  In 
the next section, we summarize an extension to Metelli’s model that is generalized for 
heterogeneous textures. 

3.2.2. Correcting the Episcotister Model 
Singh and Anderson [Singh2002] showed how Metelli’s episcotister model failed to 
explain why an observer sometimes failed to perceptually scission an overlaid semi-
transparent layer from a background layer, even though the magnitude constraint held. 
They showed that both (1) the difference in luminance between overlaid regions must be 
lowered in adjoining regions (i.e., Metelli’s magnitude constraint), as well as (2) the 
difference in luminance divided by twice the mean luminance (also known as the 
Michelson contrast) must also be lowered if transparency is to be perceived. 

 
Figure 3.5: The texture in the low-contrast image region must be continuous with the 
texture in the high-contrast image region for a user to perceive transparency, as shown on 
the left. Transparency is not perceived when the texture in the low-contrast image region 
is discontinuous with the texture in the high-contrast image region, as shown on the right. 
(Image taken and caption adapted from [Singh2002].) 

  
Their studies also found that the perception of transparency is more reliable when there is 
a “continuous” texture (or range of luminance values), rather than the two distinct 
constant values of Metelli’s model, seen across the border of the transparent overlaid 
surface. This continuity can only vary in the contrast and mean luminance across that 
border, as shown in Figure 3.5. However, a caveat: the above analysis is based on the 
assumption that the transparent layer does not modify or augment the background texture 
seen through that transparent layer. In other words, a transparent layer with light-
scattering properties (e.g., blurring what is seen through it) in addition to light-
transmitting properties, can also allow one to perceive transparency without the constraint 
of a continuous texture across the transparent layer’s contours, as mentioned above. This 
leads us to believe that the use of appropriate image-processing filters that produce light-
scattering effects applied to the underlying content may help users disambiguate 



Chapter 3: Content-Aware Transparency (CAT) 

 

27

overlapping window contents. We show how we selectively apply these filters in Section 
3.4.2.1. 

Singh and Anderson’s modification also allows us to understand the effect of unbalanced 
transparency, which occurs when the transparent layer is inhomogeneous in either 
transmittance or reflectance (or both). They were able to show that their model holds for 
“locally balanced” transparency—when the changes in transmittance and reflectance are 
smooth and gradual. This gives us confidence that our use of opaque-to-transparent 
gradients between important and unimportant window regions does not hinder the 
perception of an overlaid transparent object, as long as it is smooth and gradual, thus 
leading one to perceive continuity in the transparent layer. These gradients are discussed 
in greater detail in Section 3.4.2.1. 

3.2.3. How to Scission Transparent Layers 
As stated earlier, Metelli adequately attributed luminance relationships between 
overlapping layers to correctly determine when a user perceives transparency. However 
these same relationships could not hold when observers were asked to determine how to 
scission, or to identify different levels of transparency. Singh and Anderson performed 
several experiments to determine how an observer computes the transparency of an 
overlaid layer and found that the visual system does not use a strict luminance contrast, 
but again, a Michelson contrast to assign transparency. This helped explain why users 
perceived a rotating black episcotister as more transparent than a white one, when a 
sector of the same size was removed from each. This is because the black episcotister 
generates a higher Michelson contrast than the white one, although the two produce an 
identical luminance contrast. 

Akerstrom and Todd [Akerstrom1988] showed that color differences between 
overlapping layers facilitate the segregation of overlapping objects. This implies that, 
given illegible overlapping objects of similar color, modifying the color of one of the 
layers can help the user scission the two layers, possibly making each layer more legible. 
Although Akerstrom and Todd used only primary colors in their experiments, this 
prompts us to investigate the application of a color-change filter to obscured content to 
help disambiguate overlapping material in various user interface scenarios. We 
investigate the use of these filters in Section 3.4.2.1, showing how a desaturation (color 
removal) filter can aid users in determining how to scission.  

Akerstrom and Todd also investigated the use of orientation to help scission overlapping 
transparent layers. They found that there was no evidence of layer segregation 
distinguished only by the orientation of the objects in each layer. However, their test 
cases used overlapping textures containing random-line stereograms that were not typical 
of user interface objects. Although we do not use orientation in our implementation of 
CAT, we will not rule out its potential use, but rather discuss possible ways in which 
orientation in combination with other types of modifications, such as animation, can help 
users understand how to scission overlapping layers. We discuss this in Section 6.2, 
where we talk about alternatives to our implementation of CAT. 
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Figure 3.6: Window rendered (left) with opaque text on uniformly transparent background 
(alpha = 0.5), and (right) using CAT (alpha varying from 0.5 to 1.0), where background 
pixels of important regions are rendered opaque, producing more legible overlaid content. 

3.3. CAT Overview 
Our CAT implementation allows a window’s application to inform the rendering engine 
of the unimportant regions, as described in Section 3.4. It evaluates and compares the 
characteristics of window content, such as the high-level type (e.g., text, images, icons, or 
a combination), colors, and spatial frequency of both the obscuring and hidden window 
content. Based on the combinations of these characteristics, image-processing filters, 
such as Gaussian blur [Baudisch2004a, Beryl2006] or desaturation, alone or in 
combination, are applied to the content exposed through the unimportant regions of the 
obscuring window. Additionally, gradients are applied between the opaque and 
transparent regions. This is an example of how a content-aware technique varies the 
display of content across the appearance domain, such that the color and transparency of 
the pixels making up the content are modified to allow important regions to maintain 
their legibility. An example of overlapping text is shown in Figure 3.6.  

3.4. CAT Implementation 
A key issue in implementing CAT, discussed below, is to identify the important and 
unimportant regions of a window.  This determines which regions of that window are to 
be rendered opaque and which are to be rendered transparent. When rendering the 
gradient between these regions, it is desirable that the opaque-to-transparent transition be 
made smooth and visually appealing, since an abrupt boundary could imply a separation 
of the opaque and transparent sections, leading the user to believe that one window is 
actually divided into multiple objects. We render no pixel 100% transparent, since it 
would completely expose the content underneath, potentially misleading the user into 
believing that this content was associated with the overlaid window. We have found that 
a 50% transparency value works well. We have also found that rendering important 
regions with a 10% transparency (90% opacity) value allows for some visibility through 
overlaid content, with little risk of content ambiguity; this supports earlier evaluations of 
usable and efficient transparent user interfaces, such as an experiment that employed a 
variant of the Stroop effect [Stroop1935], in which subjects viewed color names through 
a transparent colored patch [Harrison1995a, Harrison1995b]. 
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Since users often interact with window decoration (title bar, menus, border, scroll bars), 
we consider this important content. Therefore, our CAT implementation renders the 
pixels that make up these regions at 90% opacity, in the same way that it treats important 
regions of the window body. In the case of opaque windows, keeping the window 
decoration at 90% opacity allows users to disambiguate window boundaries more easily. 
We have found that it is not necessary to incorporate gradients connecting the nearly 
opaque pixels making up the window decoration to nearby unimportant regions. 

3.4.1. Important vs. Unimportant Regions 
We have considered several approaches to determining important and unimportant 
regions in a window. In one approach, the rendering engine can classify window regions 
containing only a particular background color or texture as unimportant. Alternatively, 
the user might explicitly identify unimportant regions manually with a mouse or 
touchpad, or automatically by using an eye tracker to detect window regions on which 
their gaze does not dwell. Regions containing empty space (i.e., ones devoid of text, 
icons, and images) could also be automatically classified as unimportant, which is what 
we do in our implementation. However, since some applications utilize empty space (e.g., 
displaying page margins in a document), we allow the window’s application to notify the 
rendering engine of these unimportant regions. This may require the application designer 
to provide a bitmap of alpha values, or specify a set of geometric bounds with 
characterizations of their contents, as in our testbed application. 

3.4.2. Classifying Content 
A CAT window takes into account characteristics of both its own content and that of the 
windows it obscures to determine a gradient and transparent filter combination that will 
promote efficient use of screen space, and unambiguous visualization of the overlapping 
data. 

3.4.2.1. Opaque-to-Transparent Gradients 
Our CAT implementation uses opaque-to-transparent gradients following a Gaussian 
falloff between important (i.e., opaque) and unimportant (i.e., semi-transparent) regions. 
We also experimented with linear gradients, and found that a Gaussian-shaped gradient 
provides a more aesthetically pleasing transition. Using a 2D isosurface equation, for 
each pixel (px, py), a scalar value s is computed as a weighted sum (ssum) of N 
intermediate scalars si, each computed relative to one of N objects with centroid (Xi, Yi) in 
the window, added to the weighted scalar maximum, smax, for that pixel. Adding a 
weighted smax allows a pixel closer to content than another pixel with an equal ssum value 
to have a higher overall scalar value. We tested many different weights, and found that 
the value of 0.3 for β seemed to produce the most aesthetically pleasing results. Objects 
can vary from an icon to a block of text and can have arbitrary dimensions. The scalar 
value s for each pixel is computed as: 

s = βsmax + (1−β)ssum, 

where ssum =
si
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We experimented with the exponent value v and have found that –5 works reasonably 
well, although all real numbers we have tried, ranging from –3 to –7, produce acceptable 
results. The variable d is the desired gradient distance from opaque to transparent pixels. 
Pixels containing scalar values of 1.0 or above are rendered opaque, 0.0 is rendered 
transparent, and intermediate values are rendered with a proportional opacity. The 
amount of otherwise hidden content revealed through overlaid windows depends on the 
combination of the d value and how small and widely interspersed the unimportant 
regions are. For example, a large d value with many small, interspersed regions will 
reveal little hidden content. 

Overlaid Content Obscured Content 

Type Color Freq. Type Color Freq. 

Filter(s) Applied 
to Obscured 

Content 

text CX – text CY – Blur (r=3) 

text CX – text CX – Desaturation, 
Blur (r=5) 

not icons – – NC – high Desaturation, 
Blur (r=5) 

not icons – – NC – low Blur (r=3) 

icons – – icons – – Desaturation, 
Blur (r=5) 

icons – – not icons – high Desaturation, 
Blur (r=5) 

icons – – not icons – low Blur (r=3) 

Table 3.1: The image-processing filters applied to obscured content, based on 
characteristics of both the overlaid and obscured contents. CX and CY represent arbitrary 
colors. “–“ signifies that it is not considered. The “Freq.” column specifies whether the 
content has predominantly low or high spatial frequencies.  

3.4.2.2. Content-Dependent Transparency Filters 
Using traditional, unconditional whole-window blending, certain window layout 
arrangements make it difficult for the user to correctly associate overlaid content with the 
window in which it resides. In Section 3.2.2, we discussed how an overlaid transparent 
layer with light-scattering properties can help an observer perceptually scission it from an 
underlying layer. In our implementation, we evaluate overlapping window contents to 
apply the most suitable filters to allow correct scission of the layers. Our goal is to afford 
correct perceptual scission, while modifying the underlying content as little as possible 
(or not at all). For example, in comparing overlaid versus obscured contents, if the types 
are both text or both image, we apply a light Gaussian blur (radius=3) for content 
disambiguation. The rationale for such a non-aggressive modification stems from the 
continuous textures normally inherent in images and text, as also discussed in Section 
3.2.2, which helps one to perceive and separate overlapping transparent layers more 
easily than with homogeneous layers. When both types are icons (or thumbnail images), 
we apply a desaturation followed by a more aggressive Gaussian blur (radius=5) to 
disambiguate more than with the lighter Gaussian blur alone. This is because icons (or 
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thumbnails) can have arbitrary shapes and locations within both the overlaid and 
obscured windows, and often lack a continuous texture, sometimes making it difficult to 
associate the icons with the window in which they reside. The application of a 
desaturation and a Gaussian blur afford a greater disparity in the appearances of overlaid 
and underlying content, which we feel helps in content disambiguation. Table 3.1 
illustrates the conditions under which we apply different image-processing filters to 
hidden content. 

3.5. Demo Application 
To test our ideas, we have developed a Java application that allows users to visualize 
archaeological data within traditional 2D rectangular windows, as shown in Figure 3.7. 
Users can view images, thumbnails, and text pertaining to objects excavated from a dig 
site. Regardless of content type, every window can be moved and resized. Icon windows 
allow adding, deleting, and moving thumbnails and icons to dynamically create and 
destroy important regions. Using a control panel interface, users can specify whether to 
render the windows using CAT, traditional uniform semi-transparency, or no 
transparency at all. To improve performance, image-processing techniques are not 
applied to content while windows are being resized or moved.  

 
Figure 3.7: A screenshot of the CAT demo application, in which a user can peruse through 
thumbnail and high-resolution images of archaeological data. 

3.6. CAT User Study 
To measure the effectiveness of our CAT implementation, we performed experiments to 
see if users were more effective and if they preferred to use transparent user interfaces 
that employ CAT as compared to those that do not. Our goal was not to prove that our 
CAT implementation outperformed all others in every user interface scenario, but rather 
to support our intuition that, depending on the content, the application of non-uniform 
transparency could provide an advantage over uniform transparency. We also wished to 
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determine if the decisions we made about when and what image-processing filters to 
apply to underlying content (again, given a particular user interface scenario) were 
effective and if they also provided an added performance benefit as compared to without 
their application (in those same scenarios). 

Ten paid participants (8 male, 2 female), ages 20–36, were recruited by email to 
undergraduate and graduate Computer Science student mailing lists at Columbia 
University. Every participant was a frequent computer user, and most did not have 
experience with transparency in user interfaces. Those with corrected vision wore their 
glasses or contacts, as they would when normally using a computer. We asked the 
participants to perform two tasks within one 45-minute session: a container identification 
task and a search task. Both tasks involved two overlapping transparent windows. The 
container identification task was always performed first and required participants to 
identify whether a highlighted icon appeared in the top (near) or in the bottom (far) 
window. The search task required participants to identify if the top window contained a 
particular icon. Both were to be completed using four techniques, described below. 

3.6.1. ALPHA-50 Technique 
The ALPHA-50 technique involves rendering each pixel with a 50% transparency level. 
This is done by alpha-blending 50% of its color (each color channel separately) with 50% 
of the color of the frame buffer behind it. This kind of traditional alpha-blending is a 
popular technique used in existing commercial windowing systems, and therefore, we felt 
was an adequate baseline technique. Although some commercial systems allow a user to 
specify a custom transparency level for the background (e.g., the Mac OS X terminal 
window), in most systems, such as NVIDIA’s nView and Microsoft Word for Mac 
palettes, a 50% transparency is used as the default value. 

3.6.2. ALPHA-50+B Technique 
The ALPHA-50+BLUR technique is the same as ALPHA-50, but has an added light 
scattering effect with the application of a Gaussian blur filter (radius=3) to underlying 
pixels seen through the overlaid window. 

3.6.3. ALPHA-25 Technique 
The ALPHA-25 technique renders each pixel with at a 25% transparency level. This is 
done by alpha-blending 75% of its color (each color channel separately) with 25% of the 
color of the frame buffer behind it. This produces a less “see-through” effect as compared 
to the ALPHA-50 technique, but still allows a user to perceive content that lies beneath 
overlaid windows. 

3.6.4. ALPHA-X+BD Technique 
The ALPHA-X+BD technique takes each pixel making up a window and renders it using 
CAT by alpha-blending a variable percentage of its color (but uniformly across each 
color channel) with the color of the frame buffer behind it. This percentage is determined 
by an exponential function of the distance between the pixel and important content within 
the window, as described in Section 3.4.2.1. Percentage values between 50% (for pixels 
far away from content) and 100% (for pixels very close to content) were used. Light 
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scattering effects in the form of a Gaussian blur (radius=3) and a desaturation filter were 
applied to any underlying pixel seen through the overlaid window. 

3.6.5. ALPHA-X Technique 
After five participants successfully completed the study using the four techniques 
described earlier, we decided to add a fifth technique, called ALPHA-X: a technique 
similar to ALPHA-X+BD in its use of CAT, except that it does not apply any image 
processing filters to the underlying content. The reason for the addition of this technique 
was to understand if the variation of transparency within a window alone produces a 
performance benefit over the ALPHA-50 and ALPHA-25 techniques, which use uniform 
transparency values. The next day, two of the five participants returned to complete the 
container-identification task using the ALPHA-X technique. For the five remaining 
participants, the order in which the five techniques were used was counterbalanced. This 
allowed seven of the ten total participants to use all five techniques.  

3.6.6. Experimental Setup 
The experiments were performed on a PC running Windows XP Professional using a 
single Dell UltraSharp 2407WFP 24” LCD display running at 1920×1200 pixel 
resolution (@ 60Hz). A standard English keyboard was used for input.  

3.6.7. Container-Identification Task 
We first asked participants to perform a container-identification task with repeated trials. 
For each trial, a participant was presented with a screenshot of two overlapping windows. 
They were asked to identify the appropriate window that contained a “target” icon placed 
amongst other icons of identical appearance, all randomly positioned within the 
overlapped portion of the two windows (the two windows always overlapped 
substantially). This icon appeared in either the top (near) or bottom (far) window, and 
always appeared in each trial, almost fully unobstructed. The target was pointed to by a 
distinct red arrow and was given the distinct name “target” written beneath it in a black 
13pt Lucida Grande sans-serif font. All other icons had distinct names starting with 
“icon” followed by an integer (e.g., “icon 5”). A screenshot of an actual trial using the 
ALPHA-25 technique is shown in Figure 3.8.  

Each participant was verbally instructed to indicate within which window they felt the 
highlighted icon appeared by pressing the up-arrow key on the keyboard to signify the 
top window, and the down-arrow key to signify the bottom window. They were verbally 
instructed to perform each trial as fast as possible, while maintaining correctness. After 
each trial, a confirmation screen appeared indicating that the participant had given a 
correct (green check) or incorrect (red “X”) response. The participant would then press 
the spacebar key to proceed to the next trial.  
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Figure 3.8: A screenshot of a trial used in the container-identification task using the 
ALPHA-25 technique. Participants had to decide whether the highlighted icon (pointed to 
by a red arrow) was in the top or bottom window. The red arrow was visible in each trial. 

 
Figure 3.9: Screenshot snippets showing a side-by-side comparison of the visual 
appearance of icons use in trials of the container-identification task for each of the five 
techniques. For each pair of icons, the left one shows how an icon in the bottom window 
would appear through the top window. The right one shows how an icon in the top window 
would appear. 
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Figure 3.10: Low spatial frequency icons (three on the left) and high spatial frequency 
icons (three on the right) used in the container-identification task.  

3.6.7.1. Procedure 
A within-subjects, repeated measures design was performed using the five techniques 
described earlier (Figure 3.9 demonstrates the differences in visual appearance of icons in 
the top and bottom windows using each of the five techniques) and two types of icons: 
those with predominantly low spatial frequencies and those with predominantly high 
spatial frequencies, as shown in Figure 3.10. Each participant completed 400 trials (5 
techniques × 2 frequency levels × 40 repetitions) and the order in which the techniques 
were used was counterbalanced across all participants. Frequency levels were 
randomized within each technique and were not consistent across techniques. 

3.6.7.2. Hypotheses 
We formulated the following hypotheses before running the container-identification 
experiment: 

(H1) Due to the similarity in appearance of overlapping contents, the ALPHA-50 
technique will be the slowest in identifying within which of two overlapping windows an 
icon appeared. 

(H2) Due to the similarity in appearance of overlapping contents, the ALPHA-50 
technique will be the most erroneous in identifying within which of two overlapping 
windows an icon appeared. 

(H3) Due to a large discrepancy in the appearance of overlapping contents, the ALPHA-
X+BD technique will be the fastest in identifying within which of two overlapping 
windows an icon appeared. 

(H4) Due to a large discrepancy in the appearance of overlapping contents, the ALPHA-
X+BD technique will be the least erroneous in identifying within which of two 
overlapping windows an icon appeared. 

(H5) Regardless of technique, trials will be completed faster and less erroneously with 
icons containing high spatial frequency content versus icons containing low spatial 
frequency content. 

In summary, when performing a container-identification task using the five techniques, 
we presumed that ALPHA-50 would be the worst performer, ALPHA-X+BD would be 
the best performer, and regardless of technique used, interacting with low spatial 
frequency icons would be more difficult than with high spatial frequency icons. 
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3.6.7.3. Results 
We analyzed the results, measuring completion time, success rate, and subjective 
preference. Only successful trials were included in the completion-time analysis. To 
compensate for right-skewing frequent to human response time, we used median values 
for our completion-time analysis. This also helps reduce the significance of outliers in the 
data. We used α = 0.05 to denote statistical significance. 

Completion-time analysis: We performed a 4 (Technique) × 2 (Spatial Frequency) 
repeated measures ANOVA on median completion times for successful trials using the 10 
participants as the random variable. (Since three of the participants did not attempt 
ALPHA-X, we excluded this technique from this analysis.) Spatial frequency (F(1,9) = 
11.215, p < 0.01) and Technique (F(3,27) = 4.821, p < 0.01) each had a significant main 
effect on completion time, while the interaction between Technique and Spatial 
Frequency did not (F(3,27) = 2.142, p = 0.118). 

 
Figure 3.11: Mean completion times for the container-identification task, showing that the 
ALPHA-50 technique performed significantly worse than all other techniques.  

Figure 3.11 shows mean completion times for the container-identification task for all five 
techniques broken down by the spatial frequency level (classified as either “high” or 
“low”) of the icons used in the task. (Note that completion times for only 7 of the 10 
participants were used for the ALPHA-X technique.) The ALPHA-25, ALPHA-X, and 
ALPHA-X+BD techniques all performed comparably well, followed by the ALPHA-
50+B technique, and then, finally the ALPHA-50 technique. Performing a paired-sample 
t-test between completion times of the ALPHA-50 and ALPHA-50+B techniques shows 
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a significant main effect (t19 = 1.792, p < 0.05), thus confirming H1. Performing paired-
sample t-tests on the completion times between each pair of the top three techniques 
showed no significant differences, thus failing to prove H3. However, it is interesting to 
note that ALPHA-25 and ALPHA-X performed comparably, even though ALPHA-X 
applies a higher transparency than ALPHA-25 to certain parts of the window (those parts 
containing no content). This leads us to believe that, using ALPHA-X, one can take 
advantage of the performance of the less-transparent ALPHA-25, but still maintain the 
high transparency of ALPHA-50, thus getting the best of both worlds.  

Finally, a paired-sample t-test on completion times, comparing trials using icons of high 
spatial frequency vs. those using icons of low spatial frequency (across all techniques), 
showed that participants performed significantly faster with icons of higher spatial 
frequency (t46 = 3.75, p < 0.001), partially confirming H5. 

Error-rate analysis: We performed a 4 (Technique) × 2 (Spatial Frequency) repeated 
measures ANOVA on error rates, using the 10 participants as the random variable. 
(Again, since three of the participants did not attempt the ALPHA-X technique, we 
excluded it from this particular analysis). Technique had a significant main effect (F(3,27) 
= 3.591, p < 0.05) and Spatial frequency had a borderline main effect (F(1,9) = 4.817, p = 
0.056) on error rate, while the interaction between them (F(3,27) = 0.637, p = 0.598) did 
not. 

 
Figure 3.12: Mean error rates for the container-identification task, showing that ALPHA-50 
proved to be the most erroneous technique. However, they could not show which 
technique was the least erroneous. 
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Performing a paired sample t-test between the two most erroneous techniques, ALPHA-
50 and ALPHA-50+B, showed little significant effect on error rate (t19 = 1.440, p = 
0.083), thus failing to confirm H2. As well, we see from Figure 3.12 that ALPHA-X 
allowed participants to be less erroneous than ALPHA-X+BD  (thus failing to confirm 
H4), and surprisingly, the difference in error rate between them was borderline significant 
(t13 = 1.764, p = 0.051). Although difficult to prove, we speculate that this may have 
occurred because two of the seven participants had the benefit of using ALPHA-X after 
performing the container-identification task with the other four techniques, since the 
ALPHA-X technique was added after these two had finished the experiment. The extra 
session was performed on a different day with the same verbal instructions given; 
however, the added experience and slightly different experimental conditions (e.g., 
different time of day) may have contributed to the lower, although borderline significant, 
mean error rates. Another possible explanation stems from the use of the desaturation and 
blur filters in the ALPHA-X+BD technique. We speculate that since the appearance of 
underlying content using the ALPHA-X+BD technique differed from the overlaid content 
across several channels (i.e., color due to the desaturation, luminance due to the semi-
transparent overlaid background, and contrast due to the Gaussian blur), the underlying 
content was perceptually more difficult to scission from the overlaid content, as 
compared to with the use of the ALPHA-X technique, which modified the appearance of 
the underlying content across only one channel (i.e., luminance due to the semi-
transparent overlaid background). This is because we speculated that participants 
determined if an icon was in the top or bottom window based on its relative difference in 
appearance from other icons. Given the semi-transparent white background of the 
overlaid window acting as a filter applied to anything seen through it, participants may 
have been looking only for an increase in luminance (due to alpha-blending the color of 
the icons’ pixels with white) to identify an icon as being contained in the bottom window. 
However, given a desaturated and blurred target icon (again, given a semi-transparent 
white background of the overlaid window), although its appearance greatly differs from 
its unmodified version, the removal of color and contrast made it more difficult to 
compare relative luminance. 

Finally, performing a paired-sample t-test on the error rates, comparing the use of high 
spatial frequency icons versus low spatial frequency icons across all techniques, showed 
a significant difference (t46 = 2.253, p < 0.015), thus fully confirming H5. 

After the completion of the container identification task, we considered whether error 
rates may have been affected by participants possibly having trouble correctly mapping 
input keys to window stack order (i.e., using the up- and down-arrow keys to indicate the 
top and bottom windows in depth, respectively). Perhaps, since trials were to be 
completed as fast as possible, participants may have mistakenly misused the up- and 
down-arrow keys to indicate the top and bottom windows along the y-axis. However, an 
analysis of the data showed that unsuccessful trials included a comparable number of 
occurrences of pressing the up-arrow when the top window was lower than the bottom 
window along the y-axis, and pressing the down-arrow when the top window was higher 
than the bottom window along the y-axis.  
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Qualitative Evaluation Analysis: We asked each participant to fill out a hand-written 
questionnaire rating each technique for the container-identification task on a Likert scale 
of 1–5 (5, being the best). Figure 3.13 shows the average ratings for each technique, 
evaluating its ease of use, satisfaction, and intuitiveness. The ALPHA-50 technique was 
rated the worst, followed by the ALPHA-50+B technique. Comments about ALPHA-
50+B included “this technique suffered the same problems as the ALPHA-50” and 
“difficult to separate what is in the foreground and what is in the background” indicating 
that the blurring effect did not facilitate an easier disambiguation between overlaid and 
underlying contents. Six out of ten participants ranked either ALPHA-X or ALPHA-
X+BD easier, more satisfying and more intuitive than the rest. Comments about these 
included “the easiest one”, “great technique”, and “this was probably the best, but only 
because it was not transparent around the icon,” indicating that the opaque background 
facilitated an easier disambiguation between overlaid and underlying contents. However, 
one participant did say that the ALPHA-X+BD technique was “the most difficult and 
confusing technique, feels too much information tries to approach the eye, and there 
aren’t many clues to separate them.” Interestingly, this same participant performed the 
container-identification task the fastest with this technique and this was the only 
technique that was completed by this particular participant with no errors. 

 
Figure 3.13: Results from the questionnaire for the container-identification task show that 
the ALPHA-50 technique was rated the most difficult, most frustrating, and most 
confusing. 
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3.6.8. Search Task 
Immediately after the container-identification task, we asked the same participants to 
perform a search task using a similar experimental setup. Again, for each trial, the 
participant was presented with a screenshot of two overlapping windows. The top (near) 
window contained several icons of identical appearance (from those shown in Figure 
3.14), all randomly positioned within the overlapped portion of the two windows (the two 
windows always overlapped). The bottom (far) window contained various types of 
content, including icons of identical appearance to those in the top window, high spatial 
frequency images (from those shown in Figure 3.15), and plain text of different sizes. A 
screenshot of an actual trial using the ALPHA-25 technique is shown in Figure 3.16.  

 
Figure 3.14: The icons used in the search task. For each trial, multiple icons of identical 
appearance were used. 

 
Figure 3.15: The predominantly high spatial frequency images used in the search task. 

The participants were verbally instructed to identify if the top window contained an icon 
with the label “target” positioned beneath it and to perform this identification as fast as 
they could, while maintaining correctness. All other icons had distinct names starting 
with “icon” followed by an integer (e.g., “icon 5”). All names appeared in a black 13pt 
Lucida Grande sans-serif font. The participant was to indicate if the target appeared in the 
top window by pressing the up-arrow key on the keyboard to signify “yes”, and the 
down-arrow key to signify “no.” After each trial, a confirmation screen appeared, 
indicating that the participant had given a correct (green check) or incorrect (red “X”) 
response. The participant would then press the spacebar key to proceed to the next trial. 
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Figure 3.16: A screenshot of a trial used in the search task using the ALPHA-25 technique. 
Participants had to decide whether an icon named “target” appeared in the top window 
(which it does in this trial).   

 
Figure 3.17: Screenshot snippets of the search task, where an overlaid “target” icon is 
visualized using 20 different combinations of transparency technique and underlying 
content type. The techniques used were (from left to right column) ALPHA-50, ALPHA-
50+B, ALPHA-25, ALPHA-X, and ALPHA-X+BD. Four different underlying content types 
were used: high spatial frequency imagery, small text, large text, and similar-looking 
icons. 
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3.6.8.1. Procedure 
A within-subjects, repeated measures design was performed using the five techniques 
described earlier and the four types of underlying content shown in Figure 3.17: (1) high-
spatial frequency images, (2) continuously flowing text written in black 13pt Lucida 
Grande font, (3) continuously flowing text written in black 26pt Lucida Grande font, and 
(4) similar-looking icons to those in the top window. Each participant completed 400 
trials (5 techniques × 4 content types × 20 repetitions). The order in which the techniques 
were used was counterbalanced across all participants. The type of underlying content 
used in each trial was chosen randomly, but the same order was used across all 
participants.  

3.6.8.2. Hypotheses 
We formulated the following hypotheses before running the search experiment: 

(H6) Within each technique, due to the dissimilarity in appearance of the target icon and 
high spatial frequency imagery, searching for the target icon over imagery will be faster 
than over any other type of content. 

(H7) When searching for the target icon over any type of content, the ALPHA-50 
technique will be slower than any other technique, due to the interference of the 
overlapping contents. 

(H8) When searching for the target icon over text (both large and small), the use of 
opaque foreground and background of the overlaid content will cause the ALPHA-X+BD 
technique to be faster than any other technique. 

3.6.9. Results 
We analyzed the results, measuring completion-time, success rate, and subjective 
preference. Only successful trials were included in the completion-time analysis. Again, 
to compensate for right-skewing frequent to human response times, as well as to reduce 
the significance of outliers, we used median values for our completion-time analysis. 
Again, we used α = 0.05 to denote statistical significance. 

Completion-time analysis: We performed a 4 (Technique) x 4 (Content Type) repeated 
measures ANOVA on median completion times for successful trials using the 10 
participants as the random variable. (Again, since three of the participants did not attempt 
the ALPHA-X technique, we excluded it from this particular analysis.) All factors had a 
significant main effect on completion time, including Technique (F(3,27) = 7.816, p < 
0.001), Content Type (F(3,27) = 3.966, p < 0.05), and the interaction between them (F(9,81) 
= 3.930, p < 0.001).  

As we see from Figure 3.18, the data fails to fully confirm H6, since there are several 
techniques that are slower when searching over imagery vs. other types of content (e.g., 
the use of ALPHA-X+BD over similar icons outperforms ALPHA-X+BD over imagery). 
However, within the ALPHA-50 technique, we see that the use of ALPHA-50 over 
imagery significantly outperforms ALPHA-50 over small text (t9 = 2.843, p < 0.01), 
partially confirming H6. 
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We also see that ALPHA-50 seems to perform worse than any other technique. Within 
each type of underlying content, we performed t-tests between ALPHA-50 and the next 
worse performer, and found borderline to no significant differences, thus failing to 
confirm H7.  

In order to confirm H8, we compared ALPHA-X to the next fastest technique of the 
ALPHA-50, ALPHA-50+B, and ALPHA-25 techniques, within each of small text and 
large text content types. Although H8 originally hypothesized that ALPHA-X+BD would 
outperform the rest of the techniques, the original intent for this hypothesis before the 
experiment was to see if a technique that rendered both the foreground and background of 
overlaid content opaque would cause a significant performance improvement over a 
technique that did not. Since ALPHA-X and ALPHA-X+BD both incorporate this 
functionality, and since ALPHA-X outperformed ALPHA-X+BD, we chose to compare 
ALPHA-X to the other three techniques rather than ALPHA-X+BD. In both cases, the 
next fastest was the ALPHA-25 technique. A sample-paired t-test shows a significant 
difference between ALPHA-X and ALPHA-25 when searching over either small text (t6 
= 2.128, p < 0.05) or large text (t6 = 3.108, p = 0.010), thus confirming H8. 

 
Figure 3.18: Average completion times for the search task using the five transparency 
techniques and four different types of underlying content. 

Error-rate analysis: We performed a 4 (Technique) x 4 (Content Type) repeated 
measures ANOVA on error rates using the 10 participants as the random variable. 
(Again, since three of the participants did not attempt the ALPHA-X technique, we 
excluded it from this particular analysis.) There were no significant effects on error rate. 
We suspect that, although completion times significantly differed, error rates were similar 
across techniques because of the nature of the search task. Searching involves looking for 
something until one has found it. If the participant has not found it, they usually search 
again to confirm that the item does not exist. In other words, although participants were 
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told to perform trials as fast as they could, the nature of a search task caused them to 
value correctness as much as, or more than, speed. 

Qualitative Evaluation Analysis: On the same questionnaire, participants rated each 
technique for the search task. Figure 3.19 shows the average ratings for each technique, 
evaluating its ease of use, satisfaction, and intuitiveness. All ratings scored relatively, 
although slightly, lower than the ratings for the container-identification task. We feel this 
is because the search task was inherently a harder task, and this caused some frustration 
for participants in general. However, relative to each other, the overall ratings for the 
techniques were similar in both the search task and the container-identification task. 
Again, the ALPHA-50 technique seemed to be the hardest, followed by the ALPHA-
50+B technique. Several comments about the ALPHA-50 technique included “terrible” 
and “an extremely frustrating experience.”  

Some participants made comments about the use of the same technique in a different task 
seeming to not have the same facilitative effect. For example, one participant said that the 
blurring effect in the ALPHA-50+B technique “did not help much in this task” as 
compared to the ALPHA-50 technique, whereas in the container-identification task, the 
same participant rated the ALPHA-50+B technique to be significantly easier, more 
satisfying and more intuitive than the ALPHA-50 technique. Another participant said that 
the use of the ALPHA-25 technique in the search task was “unexpectedly more 
frustrating than the same technique in the container identification task.”  

 
Figure 3.19: Results from the participant-filled questionnaire regarding the search task 
show that the ALPHA-X and ALPHA-X+BD techniques were rated to be the easiest, most 
satisfying and most intuitive, while the ALPHA-50 technique were rated to be the most 
difficult, most frustrating, and most confusing. Overall, each technique received relatively 
lower scores in the search task than in the container-identification task indicating that it 
was a relatively more difficult task. 
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For the most part, the opaque background and foreground in the ALPHA-X and ALPHA-
X+BD techniques facilitated an easier and more satisfying experience for the participants. 
One participant said the following about the ALPHA-X+BD technique: “because it 
blocked out the background, it was the easiest and quickest technique for this task.” 
Another said “great technique for finding target.” 

3.6.10. Discussion 
In summary, we conducted a user study comparing the use of various transparency 
techniques for a search task and a container-identification task. In both tasks, alpha-
blending at 50% (ALPHA-50) was both the worst performer and the least preferred by 
participants. Adding a blur effect to the underlying contents seen through a transparent 
object (ALPHA-50+B) improved both the performance and preference slightly. However, 
decreasing the transparency to 25% without blurring (ALPHA-25) seemed to provide a 
greater performance benefit. This technique was also preferred by participants over the 
ALPHA-50 and ALPHA-50+B techniques. In the end, apparently due to the higher 
opacity of important content, our implementation of CAT, both with (ALPHA-X+BD) 
and without (ALPHA-X) image-process filtering of the background content, proved to be 
the best performers and the most preferred techniques.  

Interestingly, our CAT implementations did not perform significantly better than other 
techniques when searching for text over high spatial frequency imagery, as opposed to 
over textual content. Although not confirmed, this leads us to believe that the level of 
transparency applied to overlaid content can safely vary depending on content type. This 
can allow certain user interface scenarios to take advantage of higher transparency values 
in some situations, allowing more content to be seen through overlaid objects without 
compromising performance. However, other factors to consider are the effect of varying 
the transparency technique used from one scenario to another and how that might affect 
the user experience in the long run. 

3.7. Interaction with CAT 
With CAT, a user can view more content simultaneously and unambiguously. To further 
increase the usefulness of our approach, we have developed techniques that allow a user 
to interact with and manipulate any visible content, using either a touchpad or a standard 
two-button mouse. 

Although many approaches allow visualization of overlaid content, they rarely allow 
interaction with the obscured content. (The Task Gallery [Robertson2000], Adobe 
Photoshop, and Autodesk 3ds Max are notable exceptions, as they each allow one to 
cycle through overlapping windows or layers.) One reason may be that with uniform 
semi-transparency, disambiguating overlapping contents can be hard, making user 
interaction with otherwise hidden content difficult. With full opacity, each pixel 
represents part of at most one window, and therefore, interaction with that pixel is 
unambiguous as to the selected window. In contrast, with uniform semi-transparency, 
each pixel is a blended representation of any number of windows and background; 
therefore, what is being manipulated at a particular pixel can be ambiguous when a user 
wishes to interact with a window underneath the top-most window. Since CAT does not 
allow important window regions to be rendered semi-transparently, each pixel on the 
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screen represents an important region from at most one window. In the case that 
unimportant content is identified as white or empty space, this facilitates unambiguous 
interaction with all visible window content, even if it is visible through one or more 
unimportant window regions. 

3.7.1. Pop-Through 
We allow a user to manipulate content beneath transparent regions of obscuring windows 
through the use of the pop-through interaction technique, which makes it possible to use 
pressure to interact with an obscured window [Zeleznik2002, Zeleznik2001]. In our 
implementation on a MERL DiamondTouch table [Dietz2001], when the user applies 
more than a threshold amount of pressure  (i.e., increases their area of hand contact with 
the table beyond a threshold) to an obscuring window, the topmost hidden window at the 
point of contact will “pop through” and become focused and fully unobstructed, as shown 
in Figure 3.20.  Currently, when using a non-pressure-sensitive input device, such as a 
standard two-button mouse, a user invokes a pop-through with a left button mouse-down 
and half-second delay. 

 
Figure 3.20: A sequence of frames showing the pop-through technique (from left to right): 
upon a mouse-down and 500ms delay over a pixel within the bounds of the obstructed 
window in the lower right, the obstructed window pops through the overlaid window and 
becomes focused for immediate interaction.  

3.7.2. Focus Filter 
The use of various image-processing filters for content disambiguation may, at times, 
make overlapped content illegible through the unimportant regions of an overlaid 
window. We provide a technique that permits a user to temporarily view filtered content 
in its unfiltered form. Applying the focus filter causes image-processed content 
underneath the overlaid window to be restored to its original unfiltered form, as shown in 
Figure 3.21, acting as a “magic lens” [Bier1993]. In our implementation, content within a 
fixed radius around the point-of-interest is restored; we have found that a 100-pixel 
radius provides adequate coverage in our informal experience. Currently, when using a 
standard two-button mouse, holding down the right button, followed by a left button 
click, invokes the focus filter. At this point, dragging the right button moves the focus 
filter appropriately.  
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Figure 3.21: The focus filter allows a user to temporarily restore an image-processed 
portion of obscured content to its original appearance for increased legibility. Here, using 
the mouse, the user temporarily focuses on part of a blurred, obscured image of a pot. 

3.7.3. Mouse-Over Pie Menu 
When using many windows, a user may wish to interact with a window at an arbitrary 
depth. Techniques such as pop-through and focus filter facilitate interaction with a single 
layer underneath the top-most window; however, they make it cumbersome to interact 
with multiple underlying windows when using a standard two-button mouse.  We provide 
a mouse-over pie menu [Hopkins1987], shown in Figure 3.21, to allow a user to 
determine the window with which to interact at any level. Using a two-button mouse, a 
user can invoke the mouse-over pie menu by holding down the left mouse button, and 
then clicking the right mouse button on a pixel representing blended (and possibly image-
processed) content from more than one window. A pie menu appears with choices 
containing thumbnail representations of all the windows that contain the selected pixel. 
As the user hovers over a particular slice of the pie, that window highlights, moves to the 
front, and becomes focused. 

The design decision to implement a pie menu over a marking menu [Kurtenbach1991] 
was based on the fact that the menu choices can differ dramatically from one invocation 
to the next. Since one of the advanced features of marking menus relies on the user 
memorizing the menu items and their placements, a pie menu seemed to suffice for this 
type of interaction.  
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Figure 3.22: The mouse-over pie menu allows a user to determine with which window to 
interact at an arbitrary depth. The menu contains only those windows beneath the mouse 
position upon invocation. 

3.8. CAT Performance 
Running on an Apple Power Mac G5 desktop (dual 2GHz, 1GB RAM), basic moving and 
resizing of windows operate at about 15–20 fps without the use of filters. We foresee 
these numbers improving with faster hardware and the use of hardware-accelerated image 
processing. Our implementation of the focus filter operates at about 10 fps, which is 
adequate for normal interaction. 

3.9. Additional Benefits of CAT 
CAT provides additional benefits in certain window layout scenarios. The use of a 
gradient between important and unimportant window regions allows one to infer the 
approximate distance from almost any pixel within a window to important content in that 
same window, and possibly even to off-screen content (as shown in Figure 3.23), similar 
to the Halo technique [Baudisch2003], which surrounds off-screen locations with rings 
just large enough to reach into the border region of the display window.  
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Figure 3.23: The use of a gradient between important and unimportant regions allows one 
to infer the approximate distance from almost any pixel within a window to important 
content in that same window, and possibly even to off-screen or obscured content. The 
obscured window’s gradient implies that important content lies beneath the obscuring 
window (top). For demonstration only, we render the obscuring window semi-transparent 
to reveal what lies beneath it (bottom). 

Additionally, spatial groupings of objects can be visually reinforced with the use of steep 
gradients (i.e., short gradients containing a large alpha discrepancy) by encapsulating 
important regions with opaque pixels thus forming an opaque “blob” around those 
regions. Finally, by knowing which regions of windows are unimportant, one could use 
space management [Bell2000] to place information not only in totally free screen space, 
but also in unimportant window regions, an idea we present in Chapter 5. 



 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 4  
 
Content-Aware Scrolling (CAS) 
 
Scrollbars are conventionally used to navigate large documents on small screens. When 
using scrollbars, scrolling along either axis can be done independently, but usually not 
simultaneously. Panning, vector scrolling, and various hardware devices allow users to 
scroll in an arbitrary 2D direction, but all require precise steering for complex 2D reading 
paths (e.g., multi-column, multi-page documents).  

In this chapter, we present content-aware scrolling (CAS) [Ishak2006], an approach that 
varies the scroll direction and speed based on the properties of the content within the 
document. We have developed an implementation of CAS, which automatically extracts 
the reading path of text PDF documents, and varies the direction, speed, and zoom while 
scrolling along this path, based on content properties, as shown in Figure 4.1. We have 
also designed and implemented a document viewer that uses the CAS widget, a user 
interface widget that allows the user to scroll along any linear or nonlinear path using 
traditional scrolling gestures, which will be described in Section 4.4. We have evaluated 
our CAS implementation and have found that participants prefer CAS when reading 
documents. We have also found that CAS outperforms both traditional and vector 
scrolling when used to navigate short distances. 
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In CAS, when the user scrolls, content is not treated as a single undifferentiated layer of 
information. Instead, properties of the content and task are taken into account to identify 
important regions to vary the scroll direction, speed, and zoom. This is a special case of 
what Smith and Taivalsaari call “generalized scrolling” [Smith1999], which they define 
as a mapping between user input and an object’s intrinsic position in an abstract space of 
display attributes. 

 
Figure 4.1: Content-aware scrolling (CAS) allows scrolling along the document reading 
path (the path in which the document is intended to be read) using the CAS widget 
(enlarged on the right). The reading path is shown roughly as the overlaid arrow, where 
black dots indicate a small unimportant region (traversed with a different scrolling 
distance mapping) and red dashes indicate a large unimportant region (traversed with an 
animation). CAS window snapshots 1–4 on the left correspond to track locations on the 
right, and are traversed in a single scroll. The light blue knob indicates the traditional knob 
location (inactive during CAS) for the current CAS knob location (currently at position 4). 

4.1. Related Work 
Almost every application allows one to scroll using scrollbars placed to the right (to 
scroll vertically) and beneath (to scroll horizontally) the viewport. Some applications, 
such as Adobe Reader[Adobe] and Google Local [Google], allow users to pan within the 
viewport. Panning, typically performed with a mouse-down and drag, pushes visible 
content out of the viewport in any direction, while pulling previously hidden content into 
view. This allows one to control distance and direction in two spatial dimensions with a 
single gesture, rather than specifying the distance and direction along the x- and y-axis 
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separately, as would be the case when using conventional scrollbars. Furthermore, precise 
horizontal or vertical scrolling can be performed using a modifier key to separately 
control of x and y. Panning works well for short distances, but is limited in that the 
longest dragging distance is equal to the diagonal of the rectangular viewport. There are 
also some systems that allow various versions of free scrolling, a first order technique 
that allows one to scroll continuously by specifying a velocity. A conventional scrollbar 
affords the use of restricted 1D free scrolling with a mouse down on a scrollbar button, 
located on each end of the scroll track.  However, this restricts the user to a system-
defined constant rate control in either the up-and-down (using the vertical scrollbar) or 
left-and-right direction (using the horizontal scrollbar). Some systems like Google’s 
Picasa allow the use of a joystick knob that, when dragged, defines a variable rate control 
in only the up-and-down direction. Another type of free scrolling is vector scrolling, 
where a mouse or joystick is used to define a vector, indicating the direction and speed of 
continuous scrolling [Zhai1997]. This offers rate control without any repeated scroll 
gestures performed by the user, which is useful when scrolling long distances. However, 
it requires users to steer precisely along a particular path, which is often difficult to do 
when the reading path for the content is not axis-aligned, but rather a complex route 
through the document (e.g., consider a multi-column, multi-page text document). 
Furthermore, none of these techniques allow one to revisit non-linear paths. 

4.1.1. Augmenting and Replacing the Scrollbar 
Some systems have augmented the scrollbar to provide additional information about off-
screen content. For example, the bookmark scrollbar [Laakso2000] provides bookmarks 
adjacent to the scrollbar such that when the user drags within the vicinity of a bookmark, 
it snaps to the nearest one. The ScrollSearcher [Björk2001] indicates search results for 
the document within the scrollbar. The Thumbar [Graham1999] provides a draggable lens 
over a thumbnail version of the entire document to quickly scan and navigate to any 
position within the document. The auditory-enhanced scrollbar [Brewster1994] uses non-
speech sounds to help identify off-screen locations.  

Other researchers have developed alternative techniques to try to outperform scrollbars, 
such as the Alphaslider [Ahlberg1994],  LensBar [Masui1998], and FineSlider 
[Masui1995], which allow for quick visualization of and traversal through a large list of 
data items. Some researchers have developed scrolling gestures to allow users to scroll in 
only one dimension [Moscovich2004, Smith2004], as well as in two dimensions 
simultaneously [Igarashi2000]. There are also those who have developed [Igarashi2000] 
and analyzed [Cockburn2005] systems that automatically zoom while scrolling in two 
dimensions. However, most of these techniques are typically applied towards one-
dimensional data, such as lists, and long linear documents (e.g., a single-column 
document), and none allow one to revisit a previously traversed path without requiring 
the user to emulate the same (and often complex) set of scrolling gestures. 

4.1.2. Hardware Interaction Devices 
There have also been hardware devices created to scroll across documents in one (e.g., 
the WheelMouse) and two dimensions (e.g., the JoyStickMouse, the MightyMouse, and 
TrackPoint) [Zhai1997]. The Logitech MX Revolution contains the MicroGearTM 
Precision Scroll Wheel, which allows users to spin the scroll wheel with minimal friction 
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for continuous scrolling through long documents. Although direction control is limited to 
one dimension as with a standard WheelMouse, scrolling long distances requires only an 
initial effort, since the near frictionless weighted wheel continues to scroll for several 
seconds after the initial spin. Unlike CAS, however, none of these devices allows one to 
revisit a complex 2D path. However these input devices could be used in conjunction 
with CAS. For example, using the Precision Scroll Wheel, one can continuously scroll 
through long paths, flicking the wheel to indicate “forwards” or “backwards” along the 
path, rather than “up” or “down” along the y-direction.  

4.1.3. Navigating Hypertext and 3D Environments 
Some hypertext systems, such as Scripted Documents [Zellweger1989], allow authors to 
create conditional and programmable paths within and between online documents. 
Similarly, CAS allows manual path creation, but also automatically creates paths based 
on attributes of the content. LineDrive [Agrawala2001], a real-time system for 
automatically generating and rendering route maps, automatically creates driving 
direction paths that accentuate the important features, such as turning points, while 
diminishing unimportant ones, such as exact lengths and angles of each road along the 
route, and may use distortion to render such regions. Similarly, CAS automatically 
creates paths and identifies important features within them, but rather than use distortion 
when rendering, it varies scrolling speed to allow users to traverse through unimportant 
regions faster than important ones. This is an example of how a content-aware technique 
varies the display of content across the temporal domain, such that, given a constant 
scroll gesture, the user is spending more time visiting important regions than unimportant 
ones. 

There have also been many systems developed to traverse a 3D path [Tan2001, 
Zeleznik1999]. For example, Khan et al.’s HoverCam [Khan2005] automatically 
determines a camera’s motion when closely inspecting a 3D object. CAS also 
automatically constructs the viewport’s motion, but uses animations and varying scrolling 
speed to reduce the amount of time spent in unimportant regions of the path, which 
depends on the user task. Galyean’s “river analogy” [Galyean1995] proposes that a user 
is like a boat floating down a river, being steered by the water current, but still able to 
veer slightly off the path using the rudder. In contrast, CAS supports strict following of a 
predetermined path, but at a user-controlled speed. To support user control while 
scrolling, we have applied this approach to an existing widget, the scrollbar, such that no 
extra screen space is used and almost no additional training is required to use it. 

4.2. The Approach: Maintain Visual Momentum 
Hochberg and Brooks [Hochberg1978] explain that a successful model of scene 
transitions within cinematography should employ what they call “visual momentum.” 
Visual momentum, within this context, refers to how a switch from one scene viewpoint 
to another affects an observer. In other words, high visual momentum allows the viewer 
to increase their understanding of a scene upon each successive viewpoint switch, 
whereas low visual momentum may disorient or confuse the viewer.  

Woods [Woods1984] extended this model and applied it to user interfaces, stating that, 
by taking into account cognitive psychological models about perception, information 
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extraction across multiple displays (or multiple glances at the same display) can be 
improved. He stated that high visual momentum results from continuity across successive 
views, which aids in information comprehension following each view transition. Our 
CAS implementation uses animations through unimportant regions to maintain continuity 
between important regions when scrolling through the reading path of a document, for 
example. This allows CAS to maintain high visual momentum while a reader scrolls 
through this path, rather than break the continuity, which traditional scrolling often 
requires when transitioning from the end of one column to the beginning of the next, for 
example. Woods also discusses several spatial representation techniques, or spatial 
access techniques, that provide information about the location of one view with respect to 
the successive one. Some of these techniques focus on route knowledge, or inter-display 
movements perceived as paths through a virtual space. In short, route knowledge allows a 
user to correctly anticipate where she is going and from where she came when switching 
views. This model helped inspire our implementation of CAS. 

Most traditional scrolling interfaces provide what Woods calls “display overlap,” or 
overlapping successive views, where the next view intersects a part of the previous view 
to maintain continuity. Display overlap increases viewer comprehension between views, 
a property that our CAS implementation maintains, as described later in Section 4.3. CAS 
further incorporates route knowledge, as described above, but also combines this with 
creating an effective route that satisfies the needs of the task. For example, in a reading 
task within a text document, the user may want to travel along the reading path, whereas 
in a search task in that same document, the user may want to travel through each search 
result in the order in which it appears in the document. More simply, the combination of 
route knowledge and route preference makes it possible for the user to know where she is 
going, know from where she came, and to find the next view beneficial in completing the 
task. In Section 4.3, we discuss how our implementation of CAS within a text document 
employs route preference when it scrolls along a path in which the document was meant 
to be read when performing a reading task, but scrolls through search results when 
performing a search task. 

4.3. CAS Implementation 
We present our implementation of CAS and how system-defined important regions help 
vary the direction, speed and zoom of scrolling. 
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Figure 4.2: The path, defined by the flow of content, can vary depending on the task, as 
shown in (a) a reading task, and (b) a text search task for "people" in same page. Solid and 
dotted black parts of path indicate important and unimportant regions, respectively. 
(Arrows and popouts are included for purposes of illustration only.) 

4.3.1. Varying Direction 
Our CAS implementation is useful for navigating to off-screen content, provided that the 
CAS path is consistent with the user’s intended scrolling direction, which can make the 
difference between a pleasant and a frustrating user experience. We define the flow of 
content as the path through which a user wishes to view the content at a given time. For 
example, this can be the reading path of a text document, or a path through the results of 
a text search, as shown in Figure 4.2. Adobe Reader automatically infers the reading path 
of documents for both its “Read Out Loud” feature [Adobe] and third-party screen 
readers to speak the text, as an accessibility feature. We use this same reading path.  

The “reflow” feature of Adobe Reader takes a different approach. To accommodate 
smaller displays, reflowing reformats the content so that the user only needs to scroll 
vertically. CAS takes a different approach by also recognizing the importance of the 
content’s intended layout, thus allowing a user to view the content unmodified while only 
needing a single scrollbar to traverse it, and potentially giving our CAS implementation 
an advantage over reflow in spatial memory tasks (e.g., remembering where a passage 
occurred in the fully laid out document). 

Adobe Reader also supports reading “article threads,” allowing a user to start reading on 
one page and continue on a different page later in the document by pressing a key or 
clicking within the document; this is a form of hypertext that is limited to links within a 
single document. Furthermore, when reading an article, the page view zooms 
discontinuously, such that the line width of the content being read fills the screen width, 
which may force a zoom level that is inadequate for reading when the viewport is too 
narrow. StyleCam [Burtnyk2002] supports continuous 3D interaction, allowing a user to 
control the speed and direction with which they traverse a manually authored 3D camera 

(a) (b) 
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path. Likewise, our CAS implementation allows manual control of direction and position 
along a 2D path within a document. However, in contrast, our CAS implementation 
affords manual control of automatically-generated task-specific 2D document paths. 
Furthermore, unlike article threads, our CAS implementation automatically extracts the 
reading path, making it effective on documents that do not contain author-constructed 
hyperlinks.  

4.3.1.1. Identifying Important Regions  
Our CAS implementation identifies important regions of a document to create a scrolling 
distance mapping between the scrollbar and document pixels. For a reading task (e.g., as 
shown in Figure 4.1), an important region is the area whose width spans the left edge of 
the first character to the right edge of the last character on a line and whose height is the 
height of that line. Following the flow of content, these text-line–sized important regions 
coalesce into contiguous stacks of rectangles with possibly varying widths and heights. 
Our paths are continuous; therefore, the unimportant regions along a path are those parts 
of the document that lie between the rectangles as encountered sequentially along the 
path. For example, when the next line of text is in a different column or on a different 
page, as shown in Figure 4.2, the distance along the path that lies within unimportant 
regions can be as large as thousands of pixels. Paths are traversed using a piecewise 
linear interpolation of the lower left points of the important regions. 

4.3.2. Varying Speed 
We vary the scrolling speed based on the locations of important regions, in the spirit of 
the adaptive control/display ratio of Semantic Pointing [Blanch2004], which improves 
target acquisition by changing the control-to-display ratio according to cursor distance to 
nearby targets. Control/display ratio is the ratio of movement of the input device, such as 
a mouse cursor, to the movement of the object that it is controlling, such as a document 
within a viewport [MacKenzie1994]. We define the scrolling distance mapping, m, as 
∆dknob/∆ddoc, or the ratio of the pixel distance that the CAS widget’s knob is dragged 
(∆dknob) to the pixel distance the document is scrolled (∆ddoc). This ratio varies as a 
function of the distance D to the next important region relative to the size of the viewport, 
as shown in Figure 4.3. For example, consider traversing a search results path within a 
textual document, as shown in Figure 4.2. The continuous path traversed by the CAS 
widget may contain many (possibly large) unimportant regions (i.e., ones that have no 
search results). Therefore, we change the scrolling distance mapping through these 
regions (shown as dotted parts of the path), despite a constant physical scrolling gesture, 
decreasing the control/display ratio. We have found that a 3× speedup works well. For 
very large distances (those larger than the viewport’s diagonal, d), the viewport 
automatically flies to the next important region using a “slow-in, slow-out” animated 
change in speed. Consider the scrollbar length s, scrollable path length p (parts of the 
path not containing large unimportant regions through which animations are used), the 
sum of the parts of the path containing important regions, pi, and the speedup factor 
through unimportant regions not traversed by an animation, x (e.g., to triple the scrolling 
speed, x = 3). We define the scrolling distance mapping, m, as: 
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The variable si is defined as the sum of the parts of the scrollbar through which important 
regions are scrolled. The variable β is the fraction of the path that contains unimportant 
regions. 

 
Figure 4.3: While scrolling along a particular path using CAS, the scrolling distance 
mapping (∆dknob/∆ddoc) depends on the pixel distance between the viewer’s current 
location and the next important region along the path, D. The value m is the ratio of 
scrollable pixels in the scrollbar to those along the entire path, which is typically constant 
in conventional scrolling (indicated by horizontal dotted blue line). In our CAS 
implementation (indicated by solid red lines), if D is somewhat far (i.e., greater than 0.5 × 
diagonal of the viewport; call this D1), the mapping is reduced by 1/x (e.g., to triple the 
scrolling speed x = 3). If D is substantially large (i.e., greater than the diagonal of the 
viewport; call this D2) the viewer performs a “slow-in, slow-out” animation to the next 
region of interest and no scrolling is required.  

4.3.3. Varying Zoom 
We vary the zoom level of the document based on the size of and distance between 
important regions. The zoom level is initially set at 200%; however, it may be reduced 
slightly if the width of an important region (e.g., a paragraph of text) cannot fit within the 
current viewport. Unlike Adobe Reader’s article threads, we do not force fit if the zoom 
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level results in illegible content (we have informally found that 150% is an acceptable 
lower bound for legibility of most 10pt fonts on our 800×600 5” Sony Vaio XU mobile 
display). For very large distances between important regions, in combination with the 
variation in speed described above, we also use a “slow-in, slow-out” animation change 
in zoom, similar to navigation in Pad++ [Bederson1996]. Igarashi and Hinckley 
[Igarashi2000] showed how varying the zoom level based on the user’s scrolling speed 
can help maintain a constant visual flow, even at high scrolling speeds. However, 
zooming may not be suitable for some content, such as text, that is illegible at low zoom 
values. Therefore, we only zoom through unimportant regions. 

4.4. CAS Widget 
The CAS widget looks and feels like a traditional scrollbar in many ways. Consider, for 
example, how the CAS widget behaves when its scroll path is mapped to the reading path 
of a text document, as shown in Figure 4.1. Dragging its knob along its track scrolls the 
document continuously along the reading path. Clicking the arrow buttons at each end 
advances the document incrementally along the path. Clicking outside the knob on the 
track also advances the document along the path one “page” at a time, such that the new 
window that is mapped to the viewport slightly overlaps the old window, providing the 
“display overlap” discussed earlier in Section 4.2. Mouse wheel scrolling is also 
supported, which helps users maintain precise control when traversing long CAS paths, 
especially on small displays. 

Although the CAS widget looks and feels like a traditional scrollbar, its resulting actions 
may significantly differ. As mentioned earlier, various reading and search paths may 
contain a non-uniform scrolling distance mapping. When the knob of a traditional 
scrollbar is dragged halfway down the track, it navigates halfway through the document. 
In contrast, when the CAS widget’s knob is dragged halfway down its track, this only 
ensures navigation halfway down its associated 2D path, which may or may not be 
through half of the document, all depending on the content properties. For example, 
navigating halfway through a search path of a 100-page document may travel to page 5 if 
there are only three result hits, where the second one is on page 5. 

4.5. Application 
To explore how CAS can be implemented and to determine its effectiveness, we have 
built an application that uses the CAS widget to support content-aware scrolling for 
different types of content. Our CAS Document Viewer is written using the Java 5.0 SDK 
[SunMicrosystems2004] for cross-platform operation, and supports both text-based PDF 
documents and JPG-encoded EXIF images. The scrolling mode is initially set to 
“normal,” meaning the CAS widget behaves like a traditional scrollbar. Conventional 
mouse-down-and-drag panning and vector scrolling are also supported.  

4.5.1. PDF Viewer 

4.5.1.1. Reading 
Upon opening a PDF document, we use the PDF text extraction tool PDFBox [PDFBox] 
to automatically extract each character, word, and line of text, along with various 
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attributes, such as their pixel locations, dimensions, font face, size and style. A reading 
path is then automatically constructed through the beginning of each line, aligned along 
the left edge of the viewport. 

To scroll along the reading path, which is stored in memory, the user must first change 
the scrolling mode from “normal” to “CAS,” through a menu option or temporary 
depression of the “alt” modifier key. Upon enabling CAS mode, if the current viewport 
position does not contain a part of the document along the reading path, the viewer 
automatically pans the document to the nearest path point. The vertical CAS widget in 
this mode now traverses that path. If the viewport is too narrow for a particular point 
along the path, the horizontal CAS widget allows left-right scrolling spanning only the 
width of the content on the path. The document orientation does not change along the 
path. 

A user may wish to venture off the path temporarily, eventually returning to her last path 
location. We allow the user to anchor her current path location by depressing the shift 
key. Extending the work on the bookmark scrollbar [Laakso2000], this creates an implicit 
bookmark, allowing the user to pan and scroll freely until shift is released. The viewer 
then automatically springs back directly (i.e., linearly) to the anchored location using a 
500 ms slow-out animation 

 
Figure 4.4: Our CAS implementation detects visible page breaks (left) before animating 
from one important region to another. Likewise, after the animation, the document is 
positioned such that a preceding page break is visible. If no page break is detected either 
before or after the animation, the current path point (i.e., line of text) is centered vertically 
within the viewport.  

When designing the scrolling interaction along a reading path, we adhered to the 
principle that the viewer should always vertically center the user’s current path point 
within the viewport’s bounds. However, during initial pilot studies, we found that certain 
boundary conditions violated this principle, causing the current path point not to always 
be vertically centered. For example, we found that users tend to vertically center content 
that is surrounded by other content (e.g., text not near the beginning or end of a column) 
within the viewport. However, users interact with content near column and page 
boundaries a bit differently. Strong visual cues, such as page edges, cause a user to not 
center content within the viewport. To account for this, we modified the scrolling 
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interaction to anticipate column and screen edges, causing an animation between the 
bottom of a column to the top of an adjacent column to occur as soon as the page edge is 
visible within the viewport. Likewise, animations that lead to the beginning of a new 
column (or page) position the document within the viewer to show the leading page 
break, as shown in Figure 4.4. 

4.5.1.2. Searching 
An integrated search function finds and highlights all occurrences of a specified string. 
When searching, the CAS widget follows the search path for that string until the search is 
cancelled or a new path is explicitly chosen. A search path starts at the first string 
occurrence (centered within the viewport), then pans directly to the second occurrence, 
then to the third, and so on. If two consecutive occurrences are located sufficiently far 
apart, scrolling is sped up and/or animated between those two points, as described earlier.  

 
Figure 4.5: “Find Faces” option in Image Viewer creates a Hamiltonian path through each 
face of a photograph. Scrolling with CAS widget follows this path (as shown by the arrow). 

4.5.2. Image Viewer 
Our viewer also supports viewing photographs. Selecting the menu item “View Faces” 
finds faces using the Betaface face and eye detection web service [Betaface]. A 
Hamiltonian path is then automatically constructed through the center of each face, 
creating a faces path that visits each face in the photograph exactly once, as shown in 
Figure 4.5. 

4.5.3. Path Creation and Persistence 
A CAS path consists of a sequence of nodes, each with a location, zoom level, and 
dimensions of the content at that point in the path. For content types whose paths are 
created automatically (e.g., textual PDF documents), persistence is not an issue, since a 
path is recreated every time the document is opened and used as the default reading path. 
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However, we also allow paths to be created manually by the user using a simple path-
creator program (similar to CyberCoaster [Satou1999]) invoked from a menu. For user-
created paths to be persistent, we require the newly created path to be explicitly saved 
using a menu option and the document to be in JPEG EXIF-compliant format (if not, we 
convert it), to store the path as metadata using Adobe XMP [Adobe]. If a file’s content 
has changed since the last path was created, the user must explicitly update the path or 
create a new one using our path editor and again explicitly save it. If a document contains 
multiple created and saved paths, they can be stored within the file’s metadata and made 
available the next time the document is opened. 

4.6. CAS User Studies 
To measure the effectiveness of our CAS implementation, we performed three 
experiments to see if users were more effective when scrolling using our CAS 
implementation versus more traditional scrolling methods, all using a standard three-
button mouse. Using each of traditional, vector, and content-aware scrolling, each 
participant completed a reading task, a long-column navigation task, and a short-column 
navigation task, all using multi-column, multi-page text documents. Each participant 
completed the reading task first, followed by the navigation tasks in a counterbalanced 
order, using each technique within a particular task in a counterbalanced order, all within 
a single 45-minute session. The purpose of the reading task, as described in Section 4.6.3, 
was to allow each participant to become familiar and comfortable with each of the three 
scrolling techniques while perusing a document at a self-controlled pace. The two 
navigation tasks, as described in Section 4.6.4, required participants to quickly navigate 
from specified start points to specified end points as fast as possible. The purpose of the 
two navigation tasks was to analyze the performance and user experience using each of 
the three techniques, as the height of columns varied within a document. Our goal was to 
identify the scenarios where CAS outperformed or was preferred over other methods. 
Completion times, occurrence of mouse clicks, and other quantitative data were gathered 
using our custom timer software embedded into the scrolling interfaces. Qualitative 
results were gathered from hand-written questionnaires completed by the participants 
after performing each of the three tasks. 

Ten paid participants (6 male, 4 female), ages 21–31, were recruited by email to 
undergraduate and graduate student mailing lists at Columbia University. Each 
participant was a frequent computer user and was familiar with traditional scrolling 
methods using a standard three-button mouse, such as mouse-down-and-drag panning, 
use of the scrollbars, as well as vertical scrolling using the mouse wheel. All used the 
mouse with their right hand and those with corrected vision wore their glasses or contacts 
during the experiment as they would when normally using a computer.  

4.6.1. Scrolling Techniques 
We asked the participants to perform the three tasks using each of three scrolling 
techniques: traditional scrolling, vector scrolling, and content-aware scrolling. 
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4.6.1.1. Traditional (T) Scrolling 
Traditional scrolling (referred to as “T-scrolling” in the experiment) refers to the use of a 
combination of several standard scrolling and panning methods, including dragging either 
the vertical or horizontal scrollbar’s knob to scroll up and down or left and right 
(respectively), mouse-down-and-drag panning, and the use of the scroll wheel for strict 
up-and-down scrolling. Almost every commercial application employs the use of vertical 
or horizontal scrollbars, as well as the mouse scroll wheel. Many commercial 
applications, such as Google Local and Adobe Reader, also support mouse-down-and-
drag panning. Because of the popularity of these approaches, we felt the T-scrolling was 
a good baseline method. 

4.6.1.2. Vector (V) Scrolling 
Vector scrolling (referred to as “V-scrolling” in the experiment) refers to the use of the 
mouse cursor location to define a vector indicating the direction and speed of scrolling, 
where scrolling occurs continuously until explicitly stopped by the participant. A middle–
mouse-button click is used to define the anchor location, and the direction of scrolling is 
determined by the vector from the anchor to the current mouse location, and the speed is 
determined by the length of the vector. Once V-scrolling is invoked, an icon appears at 
the anchor denoting its position, as shown in Figure 4.6. Another middle–mouse-button 
click stops scrolling and repositions the anchor, while a left–mouse-button click simply 
stops scrolling. Some commercial systems, such as Microsoft Word and the Mozilla 
Firefox web browser, employ this interaction technique to allow users to quickly scroll 
through long documents, which is why we chose this technique as another baseline. All 
T-scrolling features, including mouse-down-and-drag panning, mouse-wheel scrolling, 
and scrollbar knob-dragging, were disabled for this technique. 

 
Figure 4.6: A screenshot of the reading task using V-scrolling. The anchor position is 
denoted by an icon (appearing over the word "high-definition" above). The angle formed 
and distance between the mouse cursor and the anchor define the direction and speed of 
continuous scrolling. 
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4.6.1.3. Content-Aware (C) Scrolling 
Content-aware scrolling (referred to as “C-scrolling” in the experiment) refers to our 
CAS implementation, where the participant is required to only use the mouse scroll wheel 
to scroll forwards and backwards along the reading path of the document. A rotation of 
one scroll wheel notch advances one line of text in a text document. The participant was 
verbally informed to use only the scroll wheel when performing C-scrolling. This was 
because we felt that dragging the scrollbar knob is usually reserved for scrolling long 
distances to coarsely navigate to a known part of the document. In this case, participants 
were not familiar with the document, and therefore dragging the knob was not the best 
way to navigate to a relatively unknown part of the path. Since we felt that the mouse 
wheel had the best potential for user performance, we restricted content-aware interaction 
to use of the mouse wheel alone. 

4.6.2. Experimental Setup 
The experiments were performed on an Apple MacBook Pro running Mac OS X using a 
single Dell UltraSharp 2407WFP 24” external LCD display running at 1920×1200 pixel 
resolution at 60Hz. A standard three-button Microsoft optical mouse was used for input. 

4.6.3. Reading Task 
We initially asked each participant to peruse current New York Times articles, one article 
for each of the three scrolling techniques. Each article contained multiple 11"×8.5" pages, 
with each page containing multiple columns of text, as shown in Figure 4.8. The 
viewport’s dimensions were fixed at 640×480 pixels, which was wide enough to fit at 
most one column of ten-point Lucida Grande text, rendered at a legible 200% zoom 
value. Our goal was to understand the user experience while scrolling within smaller 
viewports when reading, which often occurs in full-screen mode on smaller displays, as 
well as in smaller windows on larger displays when the user is viewing several 
documents simultaneously. To read the article successfully at the specified resolution, up-
and-down scrolling was required to read a column of text, and scrolling in an off-axis 
direction was required to advance from the end of one column to the beginning of the 
next one, as well as from the end of one page to the beginning of the next one. 
Participants were not allowed to change the size of the viewport while reading and were 
asked to peruse the document at a pace that was comfortable to them. We gave a 
demonstration to each participant showing how to use a particular technique immediately 
before they had to use it, but they were not given any practice time. Participants were not 
timed during this task. Each participant spent between 3–7 minutes reading each article, 
which served as valuable practice time for the subsequent tasks, described in Section 
4.6.4. The order in which the techniques were used was counterbalanced across 
participants; however, each participant completed the reading task before any other task. 

4.6.3.1. Hypothesis 
Our initial motivation for developing CAS stemmed from the interruptions and 
discontinuities in navigation that occurred when scrolling between columns and between 
pages while reading text documents within smaller viewports. For this reason, we 
hypothesized that participants would prefer using C-scrolling when reading documents 
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over T- and V-scrolling, even though they may be much more familiar with T- or V-
scrolling.  

4.6.3.2. Usability Feedback 
Immediately following the reading task, each participant filled out a hand-written 
questionnaire rating each technique, evaluating its ease of use, satisfaction, and 
intuitiveness on a Likert scale of 1–5 (5, being the best). Figure 4.7 shows the average 
ratings. They were also asked to rank the techniques in order of preference, as well as 
comment on their scrolling experience while reading the articles. 

 
Figure 4.7: Results from the participant-filled questionnaire for the reading task show that 
the V-scrolling technique was not rated as easy to use, satisfying, or intuitive as the T- or 
C-scrolling techniques.  

When asked to rank the techniques by preference during the reading task, seven out of the 
ten participants preferred C-scrolling, while the remaining three chose T-scrolling. This 
was a significant result (χ2

(2, N=10) = 7.400, p < 0.05), confirming our hypothesis (our null 
hypothesis expected each technique to be equally preferred). Comments about C-
scrolling included “this method made it easier to view a document” and “for non-random-
access, this would be my preferred scrolling method.” Participants who ranked T-
scrolling the highest made comments about their familiarity with the technique, such as “I 
am used to this technique,” and “easiest, because it’s what I’m used to.” 

Nearly all of the comments indicating frustration were directed at V-scrolling, including 
“little pain in the eye,” and “the center icon is distracting while reading,” while one 
participant stated that “I’d like V-scrolling if it were easier to stop.” This most likely 
resulted from the use of the middle mouse button, to which most users are not 
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accustomed.  V-scrolling didn’t receive all the criticism, however. One participant did 
mention that, with T-scrolling, “changing columns is frustrating,” while another 
mentioned that, while using C-scrolling, she was confused because she sometimes did not 
know spatially where she was located within the document. This may have been due to 
the brief animations that occurred automatically, as opposed to the manual repositioning 
of the document within the viewport when using T- or V-scrolling. 

Overall, participants preferred C-scrolling for reading a document, even after using it for 
only a short time (approximately five minutes), and they were more familiar with 
traditional methods, such as T- and V-scrolling. 

4.6.4. Long-Column and Short-Column Navigation Tasks 
Immediately following completion of the reading task questionnaire, each participant was 
asked to perform two navigation tasks using the same experimental setup. At this point, 
each participant had been introduced to and was familiar with each technique. The 
640×480 pixel-sized viewport contained a two-column, multiple-page PDF document. 
For one of the tasks, each page was 8.5"×11", with two long columns per page (we call 
this the long-column navigation task). For the other task, each page was 8.5" ×5.5", with 
two short columns per page (we call this the short-column navigation task). The order in 
which the two tasks were performed was counterbalanced across participants (i.e., 
participants #1, 3, 5, 7, and 9 completed the long-column navigation task using all three 
techniques before starting the short-column task, while participants #2, 4, 6, 8, and 10 
completed the short-column navigation task using all three techniques before starting the 
long-column task). Each document contained numbered Shakespearean sonnets, sorted in 
order of increasing number, where each sonnet was preceded by a bold heading 
indicating its number (e.g., “Sonnet 2”). Pages were arranged from top-to-bottom, similar 
to the layout by most commercial PDF viewers, as shown in Figure 4.8. Both the sonnets 
and their headings were rendered in a ten-point Lucida Grande at a 200% zoom level. For 
each trial, the participant was presented with a popup dialog box indicating the sonnet to 
which they would need to navigate and click on its heading. The trial did not finish until 
the correct sonnet heading was clicked. Thus, all trials were considered successful. 
Before each technique was used, participants were verbally told that they were being 
timed and to complete each trial as fast as possible using the specified technique. 

4.6.4.1. Procedure 
For each task (long-column and short-column navigation), we used a within-subjects, 
repeated measures design with the three scrolling techniques described earlier and two 
measures of distance (one-column and two-column transitions). A one-column transition 
that started at a particular y-location (relative to the top of the column) ended at the same 
y-location (relative to the top of that column) in an adjacent column (which could 
possibly appear on the next page). Similarly, a two-column transition ended at the same 
y-location two columns away, as shown in Figure 4.8.  
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Figure 4.8: Screenshots of the viewer overlaid onto a PDF document in the long-column 
(left) and short-column (right) navigation tasks. Experiment trials timed participants while 
scrolling from a starting point (denoted by a red circle) to a destination point located either 
one column (denoted by a blue triangle) or two columns (denoted by a green square) 
away. (Overlaid colored shapes are used in the above image for illustration only). 

Long-Column Navigation Task: Each participant completed 60 measured trials (3 
techniques × 2 distances × 10 repetitions), as well as 30 interspersed unmeasured trials (3 
techniques × 10 repetitions).  

Short-Column Navigation Task: Each participant completed 90 measured trials (3 
techniques × 2 distances × 15 repetitions), as well as 45 interspersed unmeasured trials (3 
techniques × 15 repetitions).  

Unmeasured trials contained non-integer column transitions (e.g., from the top of one 
column to the center of the next column) and were included so that participants could not 
as easily anticipate the approximate location of the target sonnet (i.e., one or two columns 
away). Since all the sonnets in the document were ordered, the participant knew whether 
they would have to scroll forwards or backwards in the document, but did not know 
exactly how far. Distances were randomly ordered, but the order was consistent across all 
participants. The order in which the techniques were used was counterbalanced across all 
participants and all trials for a particular technique were completed before a participant 
used the next technique. 
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Immediately following completion of each technique within a particular task, each 
participant filled out a hand-written questionnaire rating the technique in context of that 
task in terms of ease of use, satisfaction, and intuitiveness on a Likert scale of 1–5 (5, 
being the best).  

4.6.4.2. Hypotheses 
We formulated the following six hypotheses before running the navigation experiments: 

(H1) For both the long-column and short-column navigation tasks, due to the automatic 
transitions from the end of one column to the beginning of an adjacent column, C-
scrolling will be the fastest when transitioning one column. 

(H2) For both the long-column and short-column navigation tasks, due to the required use 
of two mouse buttons to use V-scrolling and click on targets, it will be the slowest when 
transitioning one column. 

(H3) For the long-column task, due to the participants’ comfort with T-scrolling, it will 
be the fastest when transitioning two columns. 

(H4) For the long-column task, due to the requirement of having to scroll through the 
entire height of each column, C-scrolling will be the slowest when transitioning two-
columns. 

(H5) For the short-column task, due to the automatic transitions from the end of one 
column to the beginning of an adjacent column, C-scrolling will be the fastest when 
transitioning two columns. 

(H6) For the short-column task, due to required use of two mouse buttons to use V-
scrolling, it will be the slowest when transitioning two columns. 

In summary, we felt that each technique had its own strengths depending on how far one 
had to scroll and how much scrolling effort and time was saved due to the animations. 
Since the participants were unfamiliar with the document, we made an assumption that, 
for the documents with short columns, participants would navigate them in the order in 
which they were meant to be read (i.e., navigate through each sonnet on each page before 
proceeding to the next page), with little anticipation of how far they needed to scroll. 
Therefore, we felt C-scrolling would outperform the others in scenarios involving short-
column transitions. However, for long column transitions, we felt that participants would 
soon find navigating in the reading order a bit tedious. Therefore we thought they would 
soon begin to “hedge their bets” by, for example, skipping one column (and consequently 
several sonnets) with the hope that they would only need to advance forward or backward 
a few lines, and we believed they would be successful in doing so most of the time. 
Consequently, we felt T-scrolling would outperform the others when navigating two long 
columns. 
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4.6.4.3. Results for Long-Column Navigation Task 
We analyzed the results from the long-column navigation task, measuring completion-
time and subjective preference. To help reduce the significance of outliers, we used 
median values for our completion-time analysis. We used an α of 0.05 to denote 
statistical significance. 

Completion-time analysis: We performed a 3 (Technique) × 2 (Distance) repeated 
measure ANOVA on median completion times for 9 of the 10 participants as the random 
variable. (Since one participant did not successfully attempt the C-scrolling technique, we 
excluded his results from this particular analysis). While Distance had a significant main 
effect on completion time (F(1,8) = 67.759, p << 0.001), Technique did not (F(2,16) = 1.091, 
p = 0.360). However, the interaction between Technique and Distance did have a 
significant main effect (F(2,16) = 15.431, p << 0.001). 

Figure 4.9 shows mean completion times for the long-column navigation task for the two 
Distance values, broken down by Technique. For one-column transitions, C-scrolling 
performed significantly better than T-scrolling (t8 = 2.538, p = 0.017), partially 
confirming H1. T-scrolling performed significantly better than V-scrolling for one-
column transitions (t8 = 3.181, p < 0.01), partially confirming H2. For two-column 
transitions, there was no significant difference between the completion times for T-
scrolling and V-scrolling (t8 = 0.472, p = 0.325), thus failing to confirm H3. However, V-
scrolling performed significantly better than C-scrolling for two-column transitions (t8 = 
2.836, p = 0.011), confirming H4.  

 
Figure 4.9: Mean completion times for the long-column navigation task, showing that the 
C-scrolling technique performed the best when transitioning one column, but performed 
the worst when transitioning two columns. 
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T-scrolling and V-scrolling performed better than C-scrolling when transitioning two 
columns, most likely due to the combination of the spatial layout of the two-column 
document and the hedging of bets hypothesized earlier, where participants were observed 
to have successfully guessed the target sonnet’s approximate location, and then 
performed “fine-tuning” scrolling to its exact location, as demonstrated in Figure 4.10. 
For example, consider a trial starting at the bottom of a left-hand column at sonnet 7, 
requiring that the participant scroll forward to sonnet 17 (with the participant not 
knowing spatially where it appears). Rather than initially performing relatively time-
consuming pan gestures up and then to the right to see the following sonnet at the top of 
the right-hand column, the participant could make a quick single pan gesture to the right 
(to see the next column) or downwards (to see the next page) to verify whether the pan to 
the top right is necessary. Many participants found this initial time investment 
worthwhile and we feel it helped them perform tasks quicker with T-scrolling and V-
scrolling. 

Qualitative Evaluation Analysis: Following the use of each technique in the long-
column navigation task, each participant filled out part of a hand-written questionnaire 
rating the technique in context of the task in terms of ease of use, satisfaction, and 
intuitiveness on a Likert scale of 1–5 (5, being the best). All techniques seemed to be 
ranked comparably, as shown in Figure 4.11. We also asked which technique they would 
prefer to use, given this task. Preferences were again mixed, where three participants 
preferred T-scrolling, three preferred V-scrolling, and three preferred C-scrolling. 

Participant comments about the use of the different scrolling techniques for this task 
included frustrations about the long scrolling distances. Although some felt V-scrolling 
was very suitable for long-distance scrolling, two felt it made them dizzy or caused some 
strain on their eyes. Some participants noted that C-scrolling was great for short 
distances, but tedious for long distances, a comment that is consistent with C-scrolling 
performance measurements. Most complaints about C-scrolling targeted the repeated 
scroll wheel rotation gestures needed to complete longer scrolls. Several participants 
mentioned they would have liked a fourth technique that combined the use of C- and V-
scrolling into a continuous scrolling interaction along the reading path without having to 
repeatedly rotate the scroll wheel. Comments about the T-scrolling technique included 
how repetitive mouse-down-and-drag panning gestures caused fatigue in the hand. 
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Figure 4.10: When using T-scrolling and V-scrolling, some participants “peeked” at parts 
of the long-column document out of order (indicated by the short blue arrows), taking a 
chance of not having to scroll through every sonnet in order to find the target. This often 
prevented long unnecessary scrolling motions (such as that indicated by the long red 
arrow). 

 
Figure 4.11: A qualitative evaluation of the long-column navigation task shows that the 
three techniques were rated comparably in terms of ease of use, satisfaction, and 
intuitiveness. 
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4.6.4.4. Results for Short-Column Navigation Task 
We analyzed the results from the short-column navigation task, measuring completion-
time and subjective preference. Although we present the results from the short-column 
navigation task after those from the long-column navigation task, we again note that the 
order in which the participants completed the tasks was counterbalanced. To help reduce 
the significance of outliers, we used median values for our completion-time analysis. 

Completion-time analysis: We performed a 3 (Technique) × 2 (Distance) repeated 
measured ANOVA on median completion times for the 10 participants as the random 
variable. Distance (F(1,9) = 132.57, p << 0.001), Technique F(2,18) = 27.943, p << 0.001), 
and the interaction between them (F(2,16) = 16.714, p << 0.001) all had a significant main 
effect. 

 
Figure 4.12: Mean completion times for the short-column navigation task, showing that the 
C- and T-scrolling techniques performed better than V-scrolling when transitioning one 
column, and the T-scrolling technique performed the best when transitioning two 
columns. 

Figure 4.12 shows mean completion times for the short-column navigation task for the 
two Distance values, broken down by Technique. For one-column transitions, there was 
no significant difference between C-scrolling and T-scrolling (t9 = 0.723, p = 0.244), thus 
failing to fully confirm H1. Both T-scrolling (t9 = 4.769, p < 0.001) and C-scrolling (t9 = 
5.535, p < 0.001), however, performed significantly better than V-scrolling, thus fully 
confirming H2. For two-column transitions, we were surprised to find that T-scrolling 
performed significantly better (t9 = 5.252, p < 0.001) than C-scrolling, thus failing to 
confirm H5. Finally, for two-column transitions, there was no significant difference 
between C-scrolling and V-scrolling (t9 = 0.393, p = 0.352), thus failing to confirm H6. 
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Figure 4.13: A qualitative evaluation of the navigation task (short columns) shows that the 
T- and C-scrolling techniques were rated better than the V-scrolling technique in terms of 
ease of use, satisfaction, and intuitiveness. 

Qualitative Evaluation Analysis: Immediately following completion of the short-
column navigation task, each participant filled out a hand-written questionnaire identical 
to that used in the long-column task, rating each technique in context of the short-column 
navigation task in terms of ease of use, satisfaction, and intuitiveness. Both the T- and C-
scrolling techniques had higher mean scores than the V-scrolling technique, as shown in 
Figure 4.13. Preferences were also mixed for this task, where four participants preferred 
T-scrolling, four preferred C-scrolling, and two preferred V-scrolling. 

Participant comments about the use of the V-scrolling for this task mostly included 
suggestions on how to improve it, such as alternative ways to stop the scrolling rather 
than with a left mouse-button click. The need to use two different mouse buttons (middle 
button to initiate V-scrolling, left button to click on the target) was also very frustrating 
for some participants, especially for short scrolling distances, even though this two-
button interaction was copied from commercial interfaces, such as Internet Explorer and 
Mozilla Firefox, which incorporate this technique. Additional comments about V-
scrolling included that it made them feel dizzy, or that it caused some strain on their eyes. 
These comments were from the same two participants who stated this regarding the long-
column navigation task. 

Consistent with the long-column navigation task, favorable participant comments about 
T-scrolling mostly mentioned their familiarity with the technique, although some 
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mentioned that with T-scrolling, “changing columns is not as intuitive,” and that it is “not 
good for reading as we need too many mouse movements.”  

Those who preferred C-scrolling commented that they chose it over the other techniques 
because “it doesn’t require much thought, I don’t have to worry about positioning the text 
like with the other two,” and “you don’t have to bother where on the page the sonnet is.” 
Many had suggestions for improvement to the C-scrolling technique, as they did with the 
long-column navigation task, such as “the scroll speed should be adjustable.” Another 
commented that she would have liked to use C-scrolling with a different mouse, 
indicating that she could not achieve as many mouse wheel rotations with one gesture 
with the mouse used in the experiment as she could with her own mouse. 

4.7. Discussion 
We have shown how our CAS implementation has advantages over traditional scrolling 
methods in some user interface scenarios involving a need to transition from column to 
column and page to page. Whether slowly perusing or quickly navigating short document 
distances, using our CAS implementation, one can take advantage of the automatic 
scrolling transitions that occur from one part of a document to another, while incurring an 
effortless task interruption, as compared to other scrolling techniques, which require 
more effort when transitioning from column to column and page to page. Our user study 
participants favored our CAS implementation for reading, and although their preferences 
were mixed with regard to navigation tasks, they performed better using our CAS 
implementation in relatively short navigation tasks. Based on their reactions, we feel that 
both their performance and overall experiences could be further improved with some 
slight modifications to our CAS implementation, described below. 

4.7.1. Untimely Animations 
Our initial pilot studies (performed before the formal experiments) indicated that a visible 
document page break or substantial white space acted as a sufficient visual cue to indicate 
the end of a column or page and a need to scroll to continue reading. Consequently, our 
CAS implementation functioned accordingly; that is, animated transitions were invoked 
upon a scroll gesture that occurred immediately following a gesture that made a page 
break visible, as shown in Figure 4.14. However, two participants in the reading task 
experiment commented that the C-scrolling technique animated too early. In other words, 
upon scrolling towards the end of a column or page, they weren’t finished reading before 
the viewer automatically transitioned to the beginning of the next column or page, even 
though the page break was visible before the animation occurred. Therefore, we feel that 
it may be worth investigating possible modifications to alleviate this drawback. 
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Figure 4.14: A page break is not visible in the viewer on the left to indicate the end of a 
column (or page), whereas the visible page break in the viewer on the right indicates the 
end of the column. Thus, with C-scrolling, the viewer on the right would animate to the 
next column upon the next scroll gesture. 

One potential modification is to implement a variant of our initial CAS prototype 
implementation, which required that the current line be vertically centered within the 
viewport at all times, regardless of visible page breaks. As our early pilot studies 
indicated, this did not sit well with most users, but one possibility is to use a different 
scrolling gesture to allow the user to manually preempt the system indicating that they are 
ready to move on to the next column. A more aggressive mouse-wheel scroll gesture 
(such that multiple wheel notch rotations occur, rather than just one) is a possible 
candidate for this kind of interaction. This kind of functionality, however, might need to 
be accompanied by some sort of indication that such an interaction is possible at that 
moment. Otherwise, an aggressive scroll gesture will simply scroll normally advancing 
the document a distance proportional to the magnitude of the wheel rotation. Such an 
indication could be in the form of a visual cue, such as an icon near the last line of the 
column. 

Another possibility is for the system to provide some sort of visual indication to the user 
that an animation is about to occur, such that the user can stop scrolling if she is not 
finished reading to prevent the animation from occurring, or continue scrolling to proceed 
with the animation. Chang [Chang1993] discusses how using cartoon-like anticipation 
techniques can aid the user in preparing for such an animation by providing a quick 
motion contrary to the animation direction in the spirit of Wile E. Coyote in the Road 
Runner cartoons, who springs onto his back leg before dashing off after the Road Runner. 

4.7.2. “C-V-Scrolling” 
Several participants suggested a potential combination of C- and V-scrolling into what 
they called “C-V-scrolling.” The motivation behind this suggestion stemmed from the 
appreciation of the different affordances of the two techniques. With C-scrolling, they 
appreciated the use of a 1D gesture to move forward and backward within a document 
that would normally require precise navigation in two dimensions. However, for long 
distances, repeated mouse-wheel rotations caused some frustration and fatigue. On the 
other hand, V-scrolling allowed rapid and continuous scrolling with minimal effort 
beyond the initial mouse click required to invoke the use of the technique. However, the 
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precise steering required to navigate the document caused some frustrations among the 
participants. A technique that allowed users to expend little effort to scroll along the 
reading path of a document was, in their minds, achievable through “C-V-scrolling,” a 
hybrid technique allowing users to scroll along the reading path of a document (a la C-
scrolling) in a continuous fashion until explicitly stopped (a la V-scrolling). Essentially, 
this has the advantage of the precise position control obtained with C-scrolling, but now 
with the added rate control advantage of V-scrolling. 

Soon after the completion of the experiments, we implemented a version of CAS that 
incorporates vector scrolling. This required remapping the unrestrictive “joystick” 
interactions of V-scrolling (that is, an arbitrary user-defined 2D vector from the anchor 
position to the mouse cursor, which indicates direction and speed of scrolling) into a 1D 
vector that determines rate control limited to traveling either forwards or backwards 
along the reading path of a document. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 5  
 
Content-Aware Layout (CAL) 
 
Computer users often need to interact with more than one document at a time. 
Consequently, they often rearrange their windows by resizing and/or repositioning them.  
Most window managers provide ways to bring obstructed content to the front through the 
use of “alt-tab” (or, in the case of Mac OS X, “command-tab”), which invokes a menu 
containing a list of open windows (in Mac OS X, a list of open applications) from which 
the user can choose.  

Some commercial window managers automatically rearrange windows, such that each 
one is unobstructed. For example, Microsoft Windows can tile or cascade each window 
ordered by recency of use. In contrast, Apple’s Exposé scales, tiles, and neatly rearranges 
all open windows (or all open windows of a particular application) at the press of a key. 
However, none of these approaches take into account window content (as opposed to 
window type). 

In this chapter, we present content-aware layout (CAL) [Ishak2007], an approach that 
considers the content of a window to help determine if and where it should be placed on 
the screen. For example, in Figure 5.1, after a user has selected a text string in a window, 
CAL presents other windows that contain the selected text, arranging them so that the 
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search results are aligned horizontally, irrespective of the windows’ bounds. We will 
show that taking into account the characteristics of the content, along with the user’s task, 
potentially makes for more effective layouts. 

 
Figure 5.1: (a) A user wants to view other code windows containing the java variable 
“NUM_FRAMES,” which is selected in the focused window. (b) The user invokes a layout-
peripheral command, causing the system to search and present other windows that 
contain that text, with the first occurrence in each window highlighted and aligned with the 
selected text. 

(a) 

(b) 
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We implemented a testbed application, called CASTLE (Content-Aware Scrolling, 
Transparency, and Layout Environment) that demonstrates the use of CAL coordinated 
with our other content-aware techniques. Rearranged windows can overlap by taking 
advantage of CAT to allow otherwise obstructed unimportant content (e.g., during a 
search, window regions not containing search results) to be seen through transparent 
regions of neighboring windows. CASTLE also allows a user to scroll through every 
search result within a window (using CAS) and between windows (using CAL) using 
only the mouse scroll wheel. 

5.1. Related Work 
We summarize relevant work in bringing obscured content into focus and automatically 
arranging content in user interfaces. 

5.1.1. Bringing Obscured Content to Focus 
Both alt-tab and Exposé are familiar techniques used to bring an obstructed object into 
focus. 3ds Max [Autodesk], Adobe Photoshop [Adobe], and our CAT mouse-over pie-
menu (see Section 3.7.3) allow users to cycle through a list of overlapping objects 
beneath the current mouse cursor position. However, these techniques require a user to 
know the approximate bounds of an obscured window to invoke the list containing it. 

5.1.2. Automatic Layout Using Constraint Solvers 
There has been extensive research in automatic layout using design grids [Feiner1988, 
Jacobs2003], machine learning [Borning1986, Myers1993, Stille1996, Zhou1999], and 
evaluation techniques [Comber1995, Comber1988, Jeffries1991, Sears1993, Sears1997, 
Tullis1984]. There has also been research in layout using constraint solvers [Badros2001, 
Borning1986, Cohen1988, Cohen1986, Graf.1992, Hudson1990, Hudson1996, 
Kochhar1991, Myers1994, Vander Zanden1990, Weitzman1994], some of which attempt 
to adhere to aesthetic design criteria [Lok2004, Purvis2002]. (See Lok and Feiner 
[Lok2001] for a survey of this work.)  However, these approaches (with the exception of 
[Lok2004]) do not consider the properties of the contents within the objects to which the 
constraints are applied, and most require manually-specified constraints. Some constraint 
solvers use information about the content to automatically decide where an object should 
be placed. For example, Lok et al.’s WeightMap [Lok2004] assigns weights to each 
object based on its visual attributes to determine where it should be placed on the screen. 
However, constraints are then applied to the entire object, rather than to its content, 
whereas CAL applies constraints to the actual content that lies within a window. 

5.2. The Approach 
Before developing our approach to content-aware layout, we hypothesized that by 
making an existing layout approach content-aware, user interaction could be improved by 
facilitating the automatic arrangement of multiple windows that are related to each other 
based on their contents. This involves applying layout criteria to the window content.  In 
contrast, conventional window managers, and even constraint-based research window 
managers [Badros2001, Cohen1988], perform layout based on geometric window 
bounds. CAL applies constraints automatically by having each application report to the 
window manager the locations and dimensions of important regions within each of its 
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windows to which the constraints should be applied (e.g., window regions containing 
search results), thus rearranging the windows accordingly. CAL is an example of how a 
content-aware technique varies the display of content across a spatial domain, such that 
the location of content on the screen changes to allow the user to switch context more 
easily between important regions of multiple windows. 

5.2.1. Visual Scope 
We designed CAL with the intent to increase what Norman and colleagues refer to as 
visual scope: “the degree to which the user is able to integrate information across a 
display of multiple windows or screens and to grasp the whole of whatever is being 
displayed” [Norman1986].  Maintaining visual scope is important because many tasks 
require visual access to multiple screen objects. Since it is not necessarily true that 
presenting more information to the user will make her more productive, CAL attempts to 
display no more than what is needed at a given time. For example, consider copying text 
from one window to another. If the system presents the user with more visual information 
than just the source and destination windows, the task may not be completed as quickly, 
or even correctly at all. In fact, according to Norman and colleagues, if there is no 
relationship spanning the various screen objects, this may decrease the visual scope. Our 
goal is to match the user’s visual expectations of what is to be displayed on the screen 
with what is actually displayed. 

5.3. CAL Design 

5.3.1. Anchoring the Working Set 
With large displays, if content is not placed strategically, users may spend several 
seconds trying to locate it. During normal interaction, users often view or interact with 
only a part of the display (or what has been referred to as the working set [Card1991]). 
This can vary both physically and semantically from a paragraph of text to some 
meaningful subset of windows. CAL regards the area containing the working set as 
important for two reasons: (1) it is the region where the user is currently working, and 
therefore, contains information that is important to the user at that time, and (2) it is the 
physical part of the screen containing content around which the user may wish to see 
additional contextual information. For these two reasons, if this physical region is known 
by the system during a layout operation, CAL uses it as an anchor area, a portion of the 
screen around which a layout occurs. 

CAL allows the user to directly specify an anchor area. Although one could use an eye 
tracker to determine where the user is gazing, or record the user’s mouse activity to 
determine what parts of the screen she is interacting with more than others, these methods 
may not accurately reflect the parts of the screen containing content in which the user is 
currently interested. For example, a user’s eyes may be fixated on one part of the screen, 
while her mouse is on another, making it ambiguous to the system as to which area is 
more important. However, if the user directly indicates her area of interest, this gives 
CAL a well-defined screen region containing content in which the user is interested. We 
allow a user to directly indicate her area of interest using text selection, as described in 
Section 5.4.2. 
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5.3.2. Layout Scheme 
A variety of layout schemes could be used for rearranging various types of content. When 
dealing with text, for example, layout schemes such as an array layout (horizontal or 
vertical), a grid layout (i.e., 2D array), or a radial layout (e.g., pie menu layout) could be 
used. Furthermore, alternative layout schemes may be more appropriate for other types of 
content. We have chosen a linear horizontal array layout when dealing with text because 
it resembles side-by-side book pages, facilitating an easier visual context switch between 
the working set area and peripheral textual content. However, we made two distinct 
content-aware modifications. First, only those windows containing relevant content are 
laid out. Second, for each of these windows, the layout is performed with regard to the 
content within the window, not just the window bounds, as with most other layout 
managers. Based on an analysis of window content, we could have, in theory, modified 
an existing constraint-based layout system to enforce the geometric constraints. For 
example, one could extend RTL’s Neighborhood or Regional strategies [Cohen1988] to 
apply the constraints to objects within a window, rather than to the window bounds. 
Similarly, one could use a variant of SCWM’s Vertical/Horizontal Alignment constraint 
[Badros2001] to align offsets of the top and left edges of windows, rather than enforcing 
strict edge alignments. 

5.4. Application 
To demonstrate the CAL concept, we have developed a prototype text processor 
application in which users can view and create text documents, called the CALViewer. It 
is a cross-platform application and allows any user to create and interact with custom text 
editor windows that behave like any other window on their desktop for the purpose of 
creating or viewing plain text content (e.g., source code). 

5.4.1. Implementation 
We implemented the CALViewer using the Java 1.4 SDK on top of a custom Swing 
library containing abstract Java classes that inherit from standard Swing base classes. For 
example, our CALJFrame class inherits from Swing’s JFrame class. This abstract class 
requires any inherited class to implement several key methods to report pertinent 
information about the application during layout. For example, our CALViewer class, 
which inherits from our CALJFrame class, contains a JTextArea to display its textual 
content. The CALViewer class has to implement CALJFrame’s abstract 
getImportantRegions(Object obj) method, which returns an array of 
Rectangle objects reporting the locations and dimensions of all the important regions 
within the viewport of its JTextArea object that matches the search criteria specified 
by the variable obj (in this case, it would be textual string match). Similarly, other types 
of applications can be built on top of the CALJFrame class and their functionalities 
would behave depending on the implementations of the getImportantRegions 
method. We use Bell’s dynamic space manager [Bell2000] to control free space. 

5.4.2. Rearranging Similar Documents 
When a user interacts with text using the CALViewer, she can focus on other text 
windows containing similar content. In our implementation, the CALViewer uses textual 
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string matches to identify these windows. This works well for various tasks in which one 
must locate other windows containing the same term or phrase. In the case of writing 
source code, for example, this may be useful when trying to identify the occurrences of a 
particular variable in other code windows. In Section 5.5, we discuss how this was 
helpful to physicians who often simultaneously peruse multiple notes containing identical 
words and phrases, such as standard section headings that usually appear in every note. 

By first selecting text in a window using any conventional selection mechanism (e.g., 
double clicking on a word), the user can then invoke a layout-peripheral operation across 
all other open windows (through either a menu option or a ctrl-L shortcut key). Once 
invoked, the CALViewer takes the selected text as input, sets its current screen location 
as the anchor area, and for each window containing that search string, highlights the first 
occurrence, and then rearranges it using a linear horizontal array layout scheme, such that 
the first occurrence within each document is lined up with respect to the anchor area, as 
shown in Figure 5.1. This allows the user to visually scan the search results in a single 
spatial dimension. The rearrangement is performed using a slow-in-slow-out animation 
over 500 ms, similar to that of Apple’s Exposé and earlier work on automated layout 
[Bell2000]. The location of each window is restored using the same shortcut key, or by 
pressing the “escape” key. 

Since the CALViewer application manages multiple text editor windows, the layout-
peripheral command requires the focused window to communicate the selected text, as 
well as its absolute screen position, to all other CALViewer windows to search and 
possibly rearrange them. For each of those other windows, if the search term is found, it 
identifies the location of the search term’s first occurrence relative to the window’s 
viewport. The window is then immediately placed (via an animation) as close to the 
focused window as possible, such that the search term in the animated window is 
horizontally aligned with the selected text of the focused window (i.e., the anchor area). It 
attempts to do this without resizing the window and without scrolling within the 
viewport. However, in the case that the first search term of the animated window is not 
visible within the viewport (i.e., scrolling is needed to view it), it automatically scrolls as 
little as possible, such that it is made visible and aligned with the anchor area. 

5.5.  CASTLE: Combining CAT, CAS, and CAL 
To demonstrate the coordinated implementations of our other content-aware techniques, 
we designed and implemented CASTLE (Content-Aware Scrolling, Transparency, and 
Layout Environment), which incorporates all three of our content-aware techniques. At 
the heart of CASTLE is CAL. CASTLE also incorporates content-aware transparency 
(CAT) to allow regions of windows to be seen through transparent portions of 
neighboring windows, and content-aware scrolling (CAS) to allow users to navigate 
within and between adjacent windows to visualize and interact with content across 
multiple windows using a 1D input device. For example, in Figure 5.2, a user can search 
across all windows, invoking CASTLE to present only those that contain the search term, 
arranging them so that their search results are aligned horizontally in the center of the 
screen. Using the mouse scroll wheel, the user can then scroll through each occurrence of 
that string within each of the windows. 
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Figure 5.2: CASTLE can rearrange only those windows containing a search term, such that 
the first result in each window is horizontally aligned in the center of the screen. If 
necessary, it allows windows to overlap, such that content-aware transparency can allow 
otherwise obstructed unimportant regions to be seen through neighboring windows. 

We have asked two physicians with whom we are collaborating in the Cardiothoracic 
Intensive Care Unit at New York Presbyterian Hospital to use CASTLE to peruse patient 
daily status notes to obtain feedback about its use in a hospital environment. CASTLE 
has shown that taking into account the characteristics of the content, along with the user’s 
task, can make possible a more effective user interface. 

5.5.1. Patient Notes Application 
We have developed a prototype application in which physicians can peruse patient daily 
status notes using CASTLE. It is cross-platform and allows physicians to interact with 
custom text editor windows that behave like any other windows on their desktop. Our 
implementation uses the Java 1.4 SDK and a custom Swing library. 

5.5.1.1. Search All Patient Status Notes 
A physician is initially presented with a cascaded stack of all the daily status notes for a 
particular patient. Each note is registered with CASTLE to allow CASTLE to manipulate 
its location during layout. When a physician peruses a particular note (either written by 
her or another physician on a previous day), she can choose to make visible additional 
notes containing similar content by invoking CAL’s layout-peripheral operation across all 
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other open notes through either a menu option or a ctrl-L shortcut key (details discussed 
in Section 5.4.2). 

A physician can alternatively perform a search-and-layout operation across all open 
windows, without first selecting any text. Pressing ctrl-space causes an input dialog to 
appear, which allows the user to enter a text string. Upon pressing return, windows 
containing that string are located and the first occurrences of each search result are 
rearranged in the center of the screen, using the linear array layout scheme with its search 
results highlighted, as shown in Figure 5.3. 

 
Figure 5.3: When a physician performs a search for “MEDICATIONS,” CASTLE horizontally 
aligns every daily status note containing that term in chronological order, providing an 
effective timeline of drugs taken by the patient. The callout on the right shows the non-
linearly scaled view of a window in its entirety that would otherwise overlap the screen 
edge. 

5.5.1.2. Layout Order 
Using a linear horizontal array layout scheme, as described in Section 5.3.2, allows the 
physician to visually scan the search results in a single spatial dimension, ordered left-to-
right. In the case of a search-and-layout operation, the default sort is in decreasing order 
of result hit count. However, for physicians, the chronological order in which the notes 
were created is important to understand the patient’s status across multiple days. For our 
patient notes domain, we use this order by extracting each note’s status date, usually 
written by the physician within the first few lines of each note. In case this information is 
missing from the note, we use the file’s creation date instead. 
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5.5.2. Seam-Awareness 
For cases in which the screen cannot accommodate all relevant windows in one view, we 
have incorporated seam-awareness [Mackinlay2004] by implementing an orthogonal 
non-linearly scaled view of window content that would otherwise overlap a monitor 
seam, as shown at the right of Figure 5.3. This is a distortion effect similar to that used in 
the Fishnet web browser [Baudisch2004b], except that, in CASTLE, distortion is 
performed non-uniformly, where content nearer to the screen edge is scaled by a larger 
factor. We only scale windows that would otherwise overlap the screen edge, and we do 
not allow any part of the window to be scaled at less than 50% of its original size to 
maintain its legibility. Before the layout is reverted, a user can click on the scaled 
window to view it temporarily in its original size. In all cases, the scaled window’s 
original size is restored when the layout is reverted. 

5.5.3. Incorporating CAT 
If possible, we prevent window bounds from overlapping. However, CASTLE allows 
windows to overlap such that important regions remain unobstructed to accommodate the 
simultaneous view of additional windows. To provide a visualization of obstructed 
content, CASTLE incorporates an implementation of CAT to take advantage of screen 
space occupied by unimportant regions of neighboring windows, as shown in Figure 5.2. 
CAT varies the transparency level of different window regions based on their importance, 
and therefore renders important content and its background opaque. If unimportant 
regions are rendered transparent, they can overlap otherwise hidden regions of a 
neighboring window and thus expose them to the user. As discussed in Section 3.4.2.2, 
CAT also applies a Gaussian blur to visually similar underlying content (in this case, 
text) to reduce visual interference. We use Bell’s dynamic space management system 
[Bell2000] to query and control unallocated space on the display. 

If the screen is still insufficiently wide, we display an initial set of windows, and then 
allow the user to iterate through the next set by pressing ctrl-right or ctrl-left to advance 
forwards or backwards, respectively. The current visible set of windows is highlighted 
within a miniature view of all relevant windows at the bottom of the screen, indicating 
any additional windows that are currently invisible, as shown in Figure 5.2 and Figure 
5.3. Unwanted windows can be removed from the current set by clicking the “discard” 
button in the upper right corner of the window, allowing other windows to immediately 
occupy the newly available screen space. 

5.5.4. Incorporating CAS 
CASTLE incorporates CAS to support the use of a zero-order control device (i.e., the 
mouse scroll wheel) to navigate through each search result in every window. After the 
initial layout, if the user positions the mouse cursor over a window and rotates the mouse 
scroll wheel, CASTLE navigates between search results by automatically panning to the 
next result within the current window using CAS. Once the user reaches the last result in 
that window, a subsequent scroll wheel rotation uses CAL to rearrange the windows’ 
locations to the left when scrolling down (or to the right when scrolling up), such that the 
first result of the next window is repositioned in place of the last result of the current 
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window. Upon reaching the last result in the last window, the next scroll wheel rotation 
cycles around to the first result in the first window. 

5.5.5. Physician Feedback 
We have asked two resident physicians with whom we are working in the Cardiothoracic 
Intensive Care Unit at New York Presbyterian Hospital to informally evaluate the use of 
CASTLE for perusing daily patient status notes. After a series of initial formative 
evaluation sessions, they interacted with the current version of the system for two hours. 
Based on their experience trying the system, they stated that a system such as CASTLE 
could greatly improve the way in which they perform everyday tasks involving 
monitoring patient status notes. They only have several minutes to spend on each patient 
and therefore are time-constrained when making such references. Using our system, a 
physician can easily make inferences about a patient’s daily progress. For example, a 
physician typically needs to extract temporal information about a patient, such as the 
drugs taken over several days, by visually inspecting each note’s section entitled 
“MEDICATIONS.” Where this section appears in the note depends on its author.  In 
CASTLE, the physician can simply search for that section heading using the search-and-
layout command. They appreciated that CAL automatically rearranges the notes, lining 
up their MEDICATIONS sections (each with a list of drugs underneath the section 
heading) sorted in chronological order, as shown in Figure 5.3. This effectively produces 
a display of the drugs a patient has taken over the course of several days in a matter of 
seconds. Although they preferred neighboring windows not to overlap if possible, they 
said that they liked how CAT reduced the obstruction of window regions, since these 
otherwise hidden regions were now visible through unimportant regions of neighboring 
windows. They also appreciated how CAS made it possible to use the mouse scroll wheel 
(or key commands), to scroll through the search results across all of their open windows. 
In addition the physicians told us that they appreciated the speed and ease with which 
they could search for and compare this information, which would otherwise take up to 
several tedious minutes to perform by hand with the software that they currently use. 



 

 

 

 

 

 

 

 

 

 

 

 

 

Chapter 6  
 
Conclusions and Future Work 
 
In this dissertation, we have described a unique approach to modifying traditional user 
interface techniques to improve both user productivity and user experience when viewing 
or interacting with 2D content.  

Through this chapter, we will summarize our contributions and present future work. We 
will present alternative content-aware modifications to the various traditional techniques 
we have successfully modified throughout this dissertation. We will also discuss how our 
contributions have opened the door to alternative interaction design and investigations of 
other traditional techniques that can take advantage of our approach. 

Finally, we will discuss how different domains outside 2D user interface design can take 
advantage of content-aware modifications. Although we have applied this approach to 2D 
user interfaces, we believe that being content-aware is applicable to a variety of domains, 
including 3D user interfaces.  

6.1. Summary of Contributions 
We have developed a set of user interface techniques that take into account an 
understanding of the content with which one interacts. We have taken the approach of 
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modifying traditional user interface techniques and making them content-aware, 
exploring their ability to improve user performance and experience. Our contributions 
are: 

Content-aware transparency: The affordance of non-interfering and unambiguous 
visualization of overlapping window content by selectively applying different levels of 
transparency, as well as various image-processing filters, to overlapping content, based 
on various properties of the content. 

Content-aware scrolling: The automatic construction of 2D paths through documents 
based on various properties of the content within them, with the ability to scroll through 
those paths using a 1D position control input device, varying scroll speed and direction 
based on various properties of the content, as well as the user task. 

Content-aware layout: The automatic determination of which windows should be 
rearranged, and where those windows should be placed on the screen by applying layout 
constraints to window contents, instead of or in addition to window bounds, such that the 
new layout affords easier visual access to window contents. 

Content-aware user interface:  A user interface that coordinates the implementations of 
content-aware transparency, content-aware scrolling, and content-aware layout to allow a 
user to view and interact with related information across multiple windows using a 1D 
position control input device. 

6.2. Future Work 
In this dissertation, we have presented specific implementations of content-aware 
modifications to traditional techniques. We now explore alternative implementations and 
future direction for each of the techniques. 

6.2.1. CAT 
We explore some scenarios in which it might be advantageous to consider different 
content properties, and present prototypes for two alternative CAT implementations, and 
speculate on their effectiveness. We also explore future enhancements to our mouse-over 
pie menu technique. 

6.2.1.1. Considering Additional Textual Properties 
In our CAT implementation, we allow applications to report their windows’ high-level 
content types. For example, a text viewer application reports that its windows contain 
text. It is a coarse categorization that specifies whether or not its windows contain text, 
but without information concerning low-level textual properties. Consider how users 
interact with text.  For example, computer system administrators can have many terminal 
windows that monitor the status of a computer network. Computer programmers 
frequently interact with many source code and documentation windows. Financial 
analysts typically visualize large tables of textual and numerical information. The content 
in each of the aforementioned situations is mostly textual, and therefore it may be worth 
exploring if user interaction could benefit from a more in-depth analysis of these textual 
properties. Properties, such as font color, face, style and size produce a plethora of 
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visualization scenarios. Although text can be generically classified as having 
predominantly high spatial frequencies, various properties can be considered to determine 
different kinds of interferences that could potentially occur when texts of different styles 
overlap [Paley2003]. Consider also line spacing and character separation as additional 
determining factors. A variety of user tasks and scenarios could greatly benefit from an 
analysis that regarded such properties to prevent overly aggressive modifications to 
content, thus providing increased legibility of overlapping materials. 

6.2.1.2. Vision Approach 
Our approach to applying image-processing filters to an obscured window’s content 
considers the properties of overlapping windows’ contents. This information is reported 
to the system by the applications’ windows, requiring communication between the 
application and the system. However, a more general approach could allow the graphics 
card to use vision algorithms to automatically determine what to report to the system. For 
example, consider a text viewer application reporting that an underlying window contains 
high spatial frequencies (e.g., black non-anti-aliased text on a white background), similar 
to [Leykin2004], who presents a method to automatically determine if a given text will be 
readable over textured background for augmented reality systems. One could use various 
high-pass filters (e.g., edge detectors) to understand the spatial frequency domain and 
amplitudes of underlying content to determine if it might interfere with overlaid content. 
This analysis could be performed on a sub-window level, as opposed to on a window 
level, as in our implementation. This could result in an automatic determination of 
transparency levels applied to an overlaid window and various filters being applied to 
different regions within the same underlying window. Also, consider that, in our 
implementation, the application reports the type of content its windows contain, such as 
icon, image, or text. Various object segmentation algorithms can help determine a more 
granular level of type and if these similar objects overlap. In other words, there is 
potential for automatic determination of content properties’ values, which is useful for 
when applications do not know how to communicate with the system the necessary 
information the system needs to make beneficial decisions when using CAT.  

6.2.1.3. Level of Awareness 
As we have mentioned before, content-aware interaction is built upon having an 
understanding of the properties of the content with which the user is interacting. In 
Chapter 2, we introduced several guidelines for designing content-aware interaction. 
However, the resulting modification can vary based on the level of content awareness. In 
other words, how content-aware does a technique have to be for its modifications to be 
effective? Granted, the level of being content-aware can vary, but is there a sufficient 
level of being content-aware, such that further analysis does not produce additional 
benefits? We have shown how our level of awareness within the context of transparent 
user interfaces can improve user interaction, but there may be additional content 
characteristics that would further improve user performance and the user experience. 
Furthermore, in addition to content properties, contextual information, such as eye-
tracking information, can help determine levels of importance. 
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6.2.1.4. Alternative 1: Assigning Multiple Levels of Importance 
Consider assigning multiple levels of importance [Furnas1986] to overlapping content. In 
other words, rather than assigning regions of windows a binary value of importance (i.e., 
important or not important) as we did in our implementation, one could build an 
importance model that would assign relative importance between overlapping contents 
that could vary based on the task. For example, consider a region of an overlaid window 
containing content behind which obscured content is potentially more important at that 
time (e.g., the underlying content contains a search result or some information that has 
recently changed of which the user has not seen yet). In this situation, one may want to 
momentarily allow the legibility and accessibility of the more important obscured 
content. This differs from our implementation described earlier, where we assigned a 
binary level of importance to content and took the approach that overlaid important 
content always took precedence over underlying important content. However, it has 
potential, and should be explored and evaluated as a viable alternative technique.  

6.2.1.5. Alternative 2: Using Orientation for Disambiguation 
In Section 3.2.3, we discussed how research in perception has shown that orientation 
differences alone do not help observers perceptually scission overlapping layers. 
However, as discussed earlier, Akerstrom and Todd’s experiments [Akerstrom1988] used 
textured layers containing random-line stereograms, rather than familiar figural objects. 
Therefore, consider more familiar objects that may be expected to be seen at a particular 
orientation (e.g., text is often expected to be oriented parallel to top and bottom edges of 
a window) where an orientation change may allow for correct perceptual scission. It also 
may be worth exploring how altering the orientation using an animation may help the 
scission process. Consider applying an animation filter to underlying content, such that it 
slightly jitters or is perceived to be seen through a water medium with slow moving 
ripples. Consider also a slight uniform pulsating-like variation of the transparency over 
time Some may be skeptical about these approaches, since animations are normally used 
to draw attention to a part of the screen, whereas in this case, it is used to reduce its 
interference with overlaid content. 

6.2.1.6. Enhancements to the Mouse-Over Pie Menu 
Since an arbitrary number of windows can exist at a particular pixel location, the mouse-
over pie menu can encounter scaling problems when displaying a large number of menu 
items. We have found that when the pie menu must display more than eight items, it 
becomes difficult to display thumbnails of each window at a recognizable size. Possible 
future modifications to accommodate this limitation could include displaying only the 
window title, or increasing the radius of the pie menu, thus allowing more room to 
display more items. Alternatively, a hierarchical pie menu can include, in the primary 
menu, an icon representing applications whose windows are beneath the specific pixel 
location, and then upon selection of an application, all of its windows in a secondary 
menu. Alternatively, the most important (e.g., most recently used) windows could be 
displayed in the primary window, with less important windows in the secondary menu. 
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6.2.2. CAS 
We now discuss how our CAS implementation can be extended to navigate alternative 
paths for different kinds of content. We also comment on future work for our 
implementation to allow for more robust path creation within text documents. 

6.2.2.1. Scrolling Through Large Documents and Across Multiple 
Documents 

CAS allows scrolling through the reading path of text documents, which we have found 
to be beneficial in reading tasks and short distance navigation tasks. Long distance 
navigation tasks, however, require a user to scroll through potentially longer paths than 
through a strict up-to-down path traversed with conventional scrolling. A potential 
enhancement to CAS is to incorporate Speed-Dependent Automatic Zooming 
[Igarashi2000], such that depending on the user scrolling speed, complex 2D paths at the 
current zoom level (e.g., close enough to the document to comfortably read the text) 
could be approximated by simpler and more coarse paths at a smaller zoom level (i.e., 
further from the document). This could provide better scrolling performance and a better 
user experience when navigating large distances when using CAS. 

In CASTLE, physicians can scroll through every search result across multiple documents 
using the mouse scroll wheel. After performing a search-and-layout using CAL, only 
those windows that contain that search result are presented to the user through which 
scrolling can take place. An alternative approach would be to lay out all the windows on 
the desktop and allow a user to employ CAS to traverse through each window, such that 
windows that better match the search query are scrolled through differently than those 
that do not.     

6.2.2.2. 3D Scrolling 
In our CAS implementation, one can travel along a path within a document (e.g., the 
reading path of a text document) using a mouse scroll wheel. Although we were able to 
automatically extract paths from text documents and photographs, other types of 
documents could potentially take advantage of being content-aware. Consider, for 
example, driving directions overlaid onto a 2D or 3D map (e.g., using Google Earth).  
The user may want to scroll, such that they virtually travel the route from its start to its 
destination. This feature is available in Google Earth, but not at a user-controlled rate. 
Since there may exist parts of the route that the user is not as interested in as others, we 
feel this interaction can be improved. Consider the LineDrive system [Agrawala2001], 
which automatically generates routes by distorting unimportant features (e.g., road 
lengths, angles, etc.) and enhancing important ones (e.g., turning points). Rather than 
visually distort unimportant features, CAS can distort the scrolling speed across those 
regions.  For example, consider the following set of driving directions from Holmdel, NJ 
to Garfield, NJ taken online from local.google.com: 

1. Head NW on RT-34 toward Ashley Dr. 2.4 mi 3 min 
2. Turn right at CR-3/Lloyd Rd. 2.1 mi 5 min 
3. Turn right at Clark St. 0.3 mi 1 min 
4. Take Garden State Pkwy N ramp 285 ft 0 min 
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5. Take right fork to Garden State Pkwy N  0.1 mi 0 min 
6. Take right fork to Garden State Pkwy N, merge onto Garden 
State Pkwy N 

39.6 mi 43 min 

7. Merge onto US-46 E via RT-20/US-46 exit 156 to River Dr. 0.5 mi 1 min 
8. Exit US-56 E toward Elmwood Park/New Jersey Tpke/Garden 
State Pkwy 

0.2 mi 0 min 

9. Merge onto River Dr. via River Dr/CR-507 S exit to Garfield 1.5 mi 3 min 
Total 46.7 mi 56 min 
 

Step 6 in the route process asks the user to “merge onto Garden State Pkwy N” and to 
proceed 39.6 miles before continuing on to the next step in the route process. Although 
this single step is only 11% of the total number of steps, it represents over 85% of the 
total distance traveled. If one were to use CAS to traverse this route, one could scroll 
through this step at a faster rate than the rest of the route despite a consistent scrolling 
gesture, since there may not be a need to virtually experience the entire 39.6 miles at the 
same rate as other steps in the route process. Just as the system determined that lines of 
text were considered important regions within a text PDF document, turns/merges can be 
considered important regions along a map containing overlaid driving directions, and 
therefore, are scrolled through at a different rate than those parts in between them (i.e., 
the unimportant regions). 

6.2.2.3. Conditional Scrolling 
Another example of a potential use for CAS is within the context of conditional 
navigation. Documents are not always read from beginning to end where one visualizes 
the content in the order in which it appears. Zellweger introduced Scripted Documents 
[Zellweger1989] as a way for authors to create conditional paths within and between 
documents. Similarly, consider a product user’s manual containing a broad range of 
information, including safety information, step-by-step instructions on how to complete a 
task, and explanations of different warning labels. One manual is often written for an 
entire class of products (e.g., standard, professional, and enterprise versions of a software 
application), rather than one manual per specific model. Conditional statements within 
the document usually direct the reader to relevant parts of the manual containing 
information related to their specific model (e.g., after step 2 of an installation task, it 
might say: “for the professional model, proceed to step 5.”). Some manuals are also 
generated from master documents that allow variants to be automatically extracted. A 
user could take advantage of CAS to scroll through the master document, such that they 
navigate along the appropriate path specific to their product model, skipping irrelevant 
parts of the document. This has a similar flavor to a famous series of children’s books 
published by Bantam Books throughout the 1980’s and 1990’s, called “Choose Your 
Own Adventure,” where each story was written such that the reader took the role of the 
main character [CYOA]. The reader was then occasionally presented with choices on 
how the story should progress and would then navigate to a different part of the book 
depending on which choice was made. Thus, the plot could unfold in different ways and 
eventually lead to a variety of different endings. 
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6.2.2.4. Intelligent Path Creation 
Our CAS implementation automatically extracts reading paths from a text PDF document 
using the same reading path that Adobe Reader’s “Read Out Loud” feature would use to 
help the visually impaired read a document. This works well for most documents, but 
sometimes fails when the text resides outside the continuous main body. Some text (e.g., 
inline quotes, captions, titles) may spatially appear inline with the main body’s text, but 
logically appear out of order in a separate text box after the main body. This results in 
paths that seemingly skip over these sections but return to them after the last word on the 
page—most likely an undesirable route. 

To account for this, the path creation process could take a double pass approach. That is, 
after extracting all the text and its locations and dimensions, it could take a second pass to 
detect sections that seem out of place. A simple approach is to detect when a path skips 
over (and possibly intersects) a block of text with the appropriate spatial and visual 
properties to be visually integrated with the surrounding content. With the combination of 
a natural language processing approach, the path could more intelligently detect where 
such sections can logically be placed. 

6.2.2.5. Path Parameter Enhancements 
CAS paths are currently created using piecewise linear interpolations of a sequence of 
points defined by important regions throughout the document. Although this works well 
for textual content, various path parameter adjustments can help improve the interaction 
for other types of content, such as images, as in our CAS Image Viewer. For example, if 
we make use of polynomial interpolations, or splines, a smoother path can be constructed 
through the faces of people in photographs. This may also work well for paths 
determined by driving directions on 2D or 3D maps. 

6.2.3. CAL 
We now discuss potential future work for CAL, including modifications for the Patient 
Notes application and alternative layout schemes. 

6.2.3.1. Patient Notes Application Enhancements 
With the help of our colleagues, we hope to incorporate a high-level medical 
classification algorithm to help retrieve documents that are “relevant” to completing a 
daily patient status note without having to match an exact textual search. We would also 
like to take into account a model of the document structure to refine the scope of the 
important regions (e.g., to include the full list of drugs under “MEDICATIONS” rather 
than just the heading).  

With the help of our Computer Science colleagues specializing in natural language 
technology, we plan on displaying a summary note, which is automatically created from 
the information contained within multiple manually created daily status notes. This gives 
the physician a single note containing all the pertinent information about a patient. 
However, since the note contains system created information, the physician may wish to 
see the parts of the original daily status notes from which this information was created. 
Using CAL, these parts of other daily status notes that were used as inputs to create the 
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summary note can be rearranged contextually sensitive to the physical part of the 
summary note it supports. Overall, we believe that CAL has the potential to improve 
productivity in this environment. 

6.2.3.2. Multi-Display Environments  
We believe CAL has great potential in multi-display environments (MDEs). Using 
multiple displays affords multiple layouts to occur simultaneously. Since users often 
prefer to use separate displays for separate tasks, CAL could potentially behave 
differently depending on the display, allowing users to conduct different types of layouts 
depending on the content, as well as the display. 

6.2.3.3. Alternative Layout Schemes 
In our CAL implementation, we used a single layout scheme: the horizontal array layout 
scheme. This affords a quick visual context switch between rearranged windows due to a 
side-by-side placement. We also considered alternative layout schemes, such as a radial 
layout scheme. Using a radial layout, important content would be placed equidistant from 
the anchor area (or the center of the screen) in different directions, similar to the way a 
pie-menu or marking menus might work. However, the specific task for which our CAL 
implementation was designed was to visually compare similar textual contents across 
multiple windows, which by using a horizontal linear array scheme could provide an 
easier visual context switch between the windows being compared. 

Google Search presents search results using a vertical linear array to present snippets of 
web pages matching a particular search query. The vertical layout facilitates a quick up-
and-down scan of the results to find a particular item. A possible enhancement to the 
interaction model of the Patients Notes application is to first present snippets of all 
documents matching a particular search query using a vertical linear array, similar to 
Google Search results, allowing the doctor to initially select the documents that she 
would like to compare. This could immediately be followed by our horizontal linear array 
layout of the selected documents.    

6.3. Additional Content-Aware Techniques and Beyond 
Throughout this dissertation, we have shown how three specific classical interaction 
techniques can be improved by allowing them to modify some display property of the 
content to which the technique is applied. This modification occurs across one or more 
particular domains. For example a modification in the spatial domain may rearrange the 
location of content, whereas a modification in the temporal domain may vary how long 
the content remains visible. The variance across these domains depends on the properties 
of that content. In other words, given a particular task, we have shown how successful 
content-aware techniques are able to present to the user what is important to complete a 
particular task in the appropriate physical place, at the appropriate moment in time, and 
with the appropriate visual appearance to complete a task sufficiently fast, accurately, and 
enjoyably.  

What other content-aware techniques to be created? Can they arise from modifications of 
traditional techniques, or can they be created from scratch? Within what other domains 
can they be developed other than the spatial, temporal, or appearance domains? We 
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believe the door has just opened for the development and evaluation of such techniques. 
Content-aware techniques can potentially aid users in 3D and mobile environments, 
public and private scenarios, audio interfaces, cursorless (or “eyes-free”) interfaces, 
collaborative environments, and beyond. Such environments require content 
modifications across additional display domains, such as audio and haptic.  

We have enjoyed performing the research that inspired this dissertation topic, as well as 
building the tools that allowed us to complete this dissertation. We are excited to 
continue to innovate and look forward to using future content-aware interaction 
techniques, both modified from existing ones, and newly constructed by other user 
interface researchers.  
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