

Content-Aware Layout

Abstract

We describe content-aware layout (CAL), a technique

that automatically arranges windows on a user’s desk-

top. Unlike conventional window managers that auto-

matically cascade or tile each window without regard to

its content, CAL uses information about the contents of

windows to help decide if and where they should be

placed. We present the approach to designing CAL, as

well as its implementation. We then conclude with a

discussion about future work and CAL’s potential use in

large display environments.

Keywords

Layout, content-aware, window manager, transparency,

scrolling, fisheye

ACM Classification

H.5.2. Information interfaces and presentation: User

Interfaces—Graphical user interfaces (GUI), Interaction

styles, Screen design, Windowing systems

Introduction

Computer users often need to interact with more than

one document at a time. Consequently, they often rear-

range their windows by resizing and/or repositioning

them. Most window managers provide ways to bring

obstructed content to the front through the use of “alt-

tab” (or, in the case of Mac OS X, “command-tab”),

which invokes a menu containing a list of open windows

Copyright is held by the author/owner(s).

CHI 2007, April 28–May 3, 2007, San Jose, California, USA.

ACM 978-1-59593-642-4/07/0004.

Edward W. Ishak

Columbia University

Department of Computer Science

New York, NY 10027 USA

ishak@cs.columbia.edu

Steven K. Feiner

Columbia University

Department of Computer Science

New York, NY 10027 USA

feiner@cs.columbia.edu

CHI 2006 · Work-in-Progress April 28-May 3, 2007 • San Jose, CA, USA

2459

CHI 2007 • Work-in-Progress

(in Mac OS X, a list of open applications) from which

the user can choose.

Some commercial window managers automatically re-

arrange windows, such that each one is unobstructed.

For example, Microsoft Windows can tile or cascade

each window ordered by recency of use. In contrast,

Apple’s Exposé scales, tiles, and neatly rearranges all

open windows (or all open windows of a particular ap-

plication) at the press of a key. However, none of these

approaches take into account window content (as op-

posed to window type).

In this paper, we discuss the design and preliminary

implementation of content-aware layout (CAL), an ap-

proach that considers the content of a window to help

determine if and where it should be placed on the

screen. For example, in Figure 1(b), after a user has

selected a text string in a window, CAL presents only

those windows that contain the selected text, arranging

the windows so that the search results are aligned hori-

zontally. We will show that taking into account the

characteristics of the content, along with the user’s

task, potentially makes for more effective layouts.

Related Work

We summarize relevant work in bringing obscured con-

tent into focus and automatically arranging content in

user interfaces.

Bringing Obscured Content to Focus

Both alt-tab and Exposé are familiar techniques used to

bring focus to an obstructed object. Applications, such

as 3ds Max, Adobe Photoshop, and our mouse-over pie-

menu [16] allow users to cycle through a list of over-

lapping objects beneath the current mouse cursor posi-

Figure 1: Comparison between Exposé and CAL prototype for

a desktop with overlapping windows in which a user wants to

locate other windows that contain the selected text, “angina”.

(a) Using Exposé, a user can view scaled versions of all win-

dows of that application and visually search for the text. (b)

Using CAL, the system presents only those windows that con-

tain the word “angina,” where search results are aligned hori-

zontally with the selected text.

(a)

(b)

CHI 2006 · Work-in-Progress April 28-May 3, 2007 • San Jose, CA, USA

2460

CHI 2007 • Work-in-Progress

tion. However, in all of these techniques, a user must

know the approximate bounds of an obscured window

to invoke the selective list containing it.

Automatic Layout

There has been extensive research in automatic layout

using design grids [10, 14, 17, 23], machine learning

[4, 25, 30, 34], evaluation techniques [8, 9, 18, 28, 29,

31], and constraint solvers [1, 4, 6, 7, 11, 12, 13, 19,

24, 32, 33], including those that adhere to aesthetic

design criteria [21, 27]. (See Lok and Feiner [20] for a

survey of this work.)

CAL Approach

Content-Aware Interaction

CAL is built on the concept of making traditional tech-

niques content-aware by taking into account various

characteristics of a document’s content to determine

how to view or interact with it, an approach we have

previously applied to transparency [16] and scrolling

[15]. In applying it to layout, we hypothesized that by

modifying an existing layout approach and making it

content-aware, user interaction would be improved.

Part of this involves applying layout criteria to the win-

dow’s contents, rather than to just the window bounds.

Although this could be achieved by manually imposing

constraints in other constraint-based layout systems [1,

6], CAL does this automatically.

Visual Scope

We designed CAL with the intent to increase what Nor-

man and colleagues refer to as visual scope: “the de-

gree to which the user is able to integrate information

across a display of multiple windows or screens and to

grasp the whole of whatever is being displayed” [26].

Maintaining visual scope is important because many

tasks require visual access to multiple screen objects.

Since it is not necessarily true that presenting more

information to the user will make her more productive,

CAL attempts to display no more than what is needed

at a given time. For example, consider copying text

from one window to another. If the system presents the

user with more visual information than just the source

and destination windows, the task may not be com-

pleted as quickly, or even correctly at all. In fact, ac-

cording to Norman and colleagues, if there is no rela-

tionship spanning the various screen objects, this may

decrease the visual scope. Our goal is to match the

user’s visual expectations of what is to be displayed on

the screen with what is actually displayed.

CAL Design

Anchoring the Working Set

With large displays, if content is not placed strategi-

cally, users may spend several seconds trying to locate

it. During normal interaction, users often view or inter-

act with only a part of the display (or what has been

referred to as the working set [5]). This can vary both

physically and semantically from a paragraph of text to

some meaningful subset of windows. CAL regards this

area as important for two reasons: (1) it is the region

where the user is currently working, and therefore,

contains information that is important to the user at

that time, and (2) it is the physical part of the screen

containing content around which the user may wish to

see additional contextual information. For these two

reasons, if this region is known by the system during a

layout operation, CAL uses it as an anchor area, a por-

tion of the screen around which a layout occurs.

CAL allows the user to directly specify an anchor area.

Although one could use an eye tracker to determine

CHI 2006 · Work-in-Progress April 28-May 3, 2007 • San Jose, CA, USA

2461

CHI 2007 • Work-in-Progress

where the user is gazing, or record the user’s mouse

activity to determine what parts of the screen she is

interacting with more than others, these methods may

not accurately reflect the parts of the screen containing

content in which the user is currently interested. For

example, a user’s eyes may be fixated on one part of

the screen, while her mouse is on another, making it

ambiguous to the system as to which area is more im-

portant. However, if the user directly indicates her area

of interest, this gives CAL a well-defined screen region

containing content in which the user is interested.

Layout Scheme

Although alternative layout schemes may be more ap-

propriate for other types of content, we have chosen a

linear horizontal array layout when dealing with text

because it resembles side-by-side book pages, facilitat-

ing an easier visual context switch between the working

set area and peripheral textual content. However, we

made two distinct content-aware modifications. First,

only those windows containing relevant content are laid

out. Second, for each of these windows, the layout is

performed with regard to the content within the win-

dow, not just the window bounds, as with most other

layout managers. For example, in Figure 1(b) CAL hori-

zontally aligns relevant content.

To avoid obstructing content, windows do not overlap in

the current implementation. We are currently incorpo-

rating content-aware transparency [16] (CAT) to take

advantage of screen space occupied by unimportant

regions of neighboring windows. CAT varies the trans-

parency level of different window regions based on their

importance. If unimportant regions are rendered trans-

parent, they can overlap otherwise hidden important

regions of a neighboring window and thus expose them

to the user.

Application

We have developed a prototype in which users can pe-

ruse text documents, called the CAL manager. The CAL

manager is cross-platform and allows users to interact

with custom text editor windows that behave like any

other window on their desktop.

Implementation

We implemented the CAL manager using the Java 1.4

SDK with a custom Swing library. We use our lab’s dy-

namic space manager [3] to control free space.

Search Open Documents

When a user peruses a text document created with the

CAL manager, she can focus on windows containing

similar content. By first selecting text in a window using

any conventional selection mechanism (e.g., double

clicking on a word), the user can then invoke a layout-

peripheral operation across all other open windows

(through either a menu option or a ctrl-L shortcut key).

Once invoked, the CAL manager takes the selected text

as input, sets its current screen location as the anchor

area, and for each document containing that search

string, highlights the first occurrence, and then rear-

ranges it using a linear horizontal array layout scheme,

such that the first occurrence within each document is

lined up with respect to the anchor area, as shown in

Figures 1 and 2. This allows the user to visually scan

the search results in a single spatial dimension, ordered

left-to-right in decreasing order of result hit count. The

rearrangement is performed using a slow-in-slow-out

animation over 500 ms, similar to that of Apple’s Ex-

posé and earlier work on automated layout [3]. The

CHI 2006 · Work-in-Progress April 28-May 3, 2007 • San Jose, CA, USA

2462

CHI 2007 • Work-in-Progress

Figure 2: A user performs a search for “Albuterol” across all

open windows. (a) By pressing ctrl-space, a search dialog

appears. The user enters text and pressing return. (b) CAL

then presents those windows that contain the text, where

search results are horizontally aligned.

location of each window is restored using the same

shortcut key, or by pressing the “escape” key.

A user can alternatively perform a search-and-layout

operation across all open windows without first select-

ing any text. Pressing ctrl-space causes an input dialog

to appear, which allows the user to enter a text string.

Upon pressing return, windows containing that string

are centered on the screen and arranged using the lin-

ear array layout scheme with its search results high-

lighted, as shown in Figure 2.

For cases in which the screen cannot accommodate all

relevant windows in one view, we have incorporated

seam-awareness [22] by implementing an orthogonal

non-linear magnification view of window content that

would otherwise overlap a monitor seam, as shown in

Figure 2. This is an effect similar to that used in the

Fishnet web browser [2], except that, in CAL, distortion

is performed non-uniformly, where content nearer to

the screen edge is scaled by a larger factor. We do not

allow any part of the window to be scaled at less than

50% of its original size to maintain legibility. Before the

layout is reverted, a user can click on the scaled win-

dow to view it temporarily in its original size. In all

cases, the scaled window’s original size is restored

when the layout is reverted.

If the screen is still insufficiently wide, we display an

initial set of windows, and then allow the user to iterate

through the next set by pressing ctrl-right or ctrl-left to

advance forwards or backwards, respectively. We are

investigating supporting content-aware scrolling [15],

to support scrolling through each search result within a

window before the next set of windows is presented.

Conclusions and Future Work

We have presented an early prototype of content-aware

layout, a technique that considers the content of win-

dows to determine if and where they should be placed

on the screen. Users can perform a search operation

that places the relevant content peripherally in a linear

array layout scheme for easier visual access to the im-

portant content.

We are incorporating CAL into a multi-monitor envi-

ronment in the Cardiothoracic Intensive Care Unit at

New York Presbyterian Hospital, where attending and

resident physicians need to create and peruse patient

status notes. The system they use currently is very

error-prone, and requires referencing contextual con-

The contents of windows that would

otherwise overlap the screen edge

are non-linearly scaled in width,

such that the entirety of the window

contents remains visible. No part of

the window is scaled at less than

50% of its original size to maintain

content legibility. Highlighted text

always remains at 100% scale.

Horizontal scale decreases from

left (100%) to right (min. of 50%) (a)

(b)

CHI 2006 · Work-in-Progress April 28-May 3, 2007 • San Jose, CA, USA

2463

CHI 2007 • Work-in-Progress

tent in other windows. With the help of our colleagues,

we are incorporating a high-level classification algo-

rithm to help retrieve documents that are “relevant” to

completing a daily patient status note without having to

match a textual search. We believe that CAL has the

potential to improve productivity in this environment,

as well as other large display systems.

Acknowledgements

This work is funded in part by IBM Research and is part

of a project being conducted under the Open Collabora-

tion Research program.

References
[1] G. J. Badros, J. Nichols and A. Borning, "Scwm: An Extensible
Constraint-Enabled Window Manager," Proc. FreeNIX 2001, June 2001.
[2] P. Baudisch, B. Lee and L. Hanna, "Fishnet, a fisheye web browser
with search term popouts: a comparative evaluation with overview and
linear view," Proc. AVI 2004, Gallipoli, Italy, May 25–28, 2004, 133–140.
[3] B. Bell and S. Feiner, "Dynamic Space Management for User
Interfaces," Proc. UIST 2000, San Diego, CA, November 5–8, 239–248.
[4] A. Borning and R. Duisberg, "Constraint-based tools for building
user interfaces," ACM Trans. on Graphics, Vol. 5 (4), Oct. 1986, 345!374.

[5] S. K. Card, G. G. Robertson and J. D. Mackinlay, "The information
visualizer, an information workspace," Proc. CHI 1991, 181–186.
[6] E. S. Cohen, A. M. Berman, M. R. Biggers, J. C. Camaratta and K.
M. Kelly, "Automatic Strategies in the Siemens RTL tied window man-
ager," Proc. Computer Workstations 1988, Mar. 7–10, 1988, 111–119.
[7] E. S. Cohen, E. T. Smith and L. A. Iverson, "Constraint-Based
Tiled Windows," IEEE Comp. Graphics and App., Vol. 6 (5), 35!45.

[8] T. Comber and J. Maltby, "Evaluating usability of screen design
with layout complexity," Proc. OZCHI 1995, 1995, pp. 175–178.
[9] T. Comber and J. Maltby, "Investigating layout complexity," Proc.
Graphics Interface 1988, June 1988, pp. 192–197.
[10] S. K. Feiner, "A grid-based approach to automating display lay-
out," Proc. Graphics Interface 1988, June 1988, pp. 192–197.
[11] W. H. Graf., "Constraint-based graphical layout of multimodal
presentations," World Sci. Series in Comp. Sci., Vol. 36, 1992, 365–385.
[12] S. E. Hudson and S. P. Mohamed, "Interactive specification of
flexible user interface displays," ACM Transactions on Information Sys-
tems, Vol. 8 (3), July 1990, pp. 269–288.
[13] S. E. Hudson and I. Smith, "Ultra-lightweight constraints," Proc.
UIST 1996, 1996, pp. 147–155.
[14] A. Hurlburt, The Grid, Van Nostrand Reinhold Company, Mel-
bourne, Australia, 1978.

[15] E. W. Ishak and S. K. Feiner, "Content-Aware Scrolling," Proc.

UIST 2006, Montreux, Switzerland, October 15–18, 2006, pp. 155–158.
[16] E. W. Ishak and S. K. Feiner, "Interacting with Hidden Content
Using Content-Aware Free-Space Transparency," Proc. UIST 2004, Sante
Fe, NM, October 24–27, 2004, pp. 189–192.
[17] C. Jacobs, W. Li, E. Schrier, D. Bargeron and D. Salesin, "Adaptive
grid-based document layout," ACM Trans. on Graphics, 2003, 838–847.
[18] R. Jeffries, J. R. Miller, C. Wharton and K. M. Uyeda, "User inter-
face evaluation in the real world: A comparison of four techniques," Proc.
CHI 1991, 1991, pp. 119–124.
[19] S. Kochhar, J. Marks and M. Friedell, "Interaction paradigms for
human-computer cooperation in graphical-object modeling," Proc. Graph-

ics Interface 1991, June 1991, pp. 180–191.
[20] S. Lok and S. Feiner, "A survey of automated layout techniques
for information presentations," Proc. SmartGraphics Symposium 2001,
March 2001, pp. 61–68.
[21] S. Lok, S. Feiner and G. Ngai, "Visual Balance for Automated
Layout," Proc. IUI 2004, January 2004, pp. 101–108.
[22] J. D. Mackinlay and J. Heer, "Wideband displays: mitigating multi-
ple monitor seams," Proc. CHI 2004, Vienna, Austria, pp. 1521–1524.
[23] J. Muller-Brockmann, Grid Systems in Graphics Design, Arthur
Niggli Publishers, Niedersteufen, Switzerland, 1981.
[24] B. A. Myers, "The garnet user interface development environ-
ment," Proc. CHI 1994 Conference Companion, 1994, 25–26.
[25] B. A. Myers, R. G. McDaniel and D. S. Kosbie, "Marquise: Creating
complete user interfaces by demonstration," Proc. INTERCHI 1993, Am-
sterdam, The Netherlands, pp. 293–300.
[26] K. L. Norman, L. J. Weldon and B. Shneiderman, "Cognitive lay-
outs of windows and multiple screens for user interfaces," International
journal of man-machine studies, Vol. 25, pp. 229–248.
[27] L. Purvis, "A genetic algorithm approach to automated custom
document assembly," Proc. Workshop on Intelligent Sytems Design and

Application, Atlanta Georgia, 2002, pp. 131–136.
[28] A. Sears, "Layout appropriateness: A metric for evaluating user
interface widget layout," IEEE Transactions on Software Engineering, Vol.
19 (7), July 1993, pp. 707–719.
[29] A. Sears and A. M. Lund, "Creating effective user interfaces," IEEE
Software, Vol. 14 (4), July/August 1997, pp. 21–24.
[30] S. Stille, S. Minocha and R. Ernst, "A2DL-an Adaptive Automatic
Display Layout system," Proc. HICS 1996, pp. 243–250.
[31] T. S. Tullis, "A computer-based tool for evaluating alphanumeric
displays," Proc. IFIP INTERACT 1984, 1984, pp. 719–723.
[32] B. Vander Zanden and B. A. Myers, "Automatic, look-and-feel
independent dialog creation for graphical user interfaces," Proc. CHI
1990, pp. 27!34.

[33] L. Weitzman and K. Wittenburg, "Automatic presentation of mul-
timedia documents using relational grammars," Proc. Multimedia 1994,
New York, October 1994, pp. 443–452.
[34] M. X. Zhou and S. Ma, "Toward applying machine learning to
design rule acquisition for automated graphics generation," Proc. 2000
AAAI Smart Graphics, Stanford, CA, March 20–22, 1999, pp. 16–23.

CHI 2006 · Work-in-Progress April 28-May 3, 2007 • San Jose, CA, USA

2464

CHI 2007 • Work-in-Progress

