

Content-Aware Scrolling
Edward W. Ishak Steven K. Feiner

Columbia University, Department of Computer Science

New York, NY 10027

{ishak, feiner}@cs.columbia.edu

ABSTRACT

Scrolling is used to navigate large information spaces on
small screens, but is often too restrictive or cumbersome to
use for particular types of content, such as multi-page,
multi-column documents. To address this problem, we
introduce content-aware scrolling (CAS), an approach that
takes into account various characteristics of document
content to determine scrolling direction, speed, and zoom.
We also present the CAS widget, which supports scrolling
through a content-aware path using traditional scrolling
methods, demonstrating the advantages of making a tradi-
tional technique content-aware.
ACM Classification: H.5.2 [Information interfaces and
presentation]: User Interfaces—Graphical user interfaces
(GUI), Interaction styles, Screen design, Windowing sys-
tems
General terms: Design, Human Factors

Keywords: Scrolling, interaction, navigation, path tra-
versal, content-awareness

INTRODUCTION

Scrollbars are conventionally used to navigate large docu-
ments on small screens. A viewport, which shows the visi-
ble portion of the entire scrollable document, is accompa-
nied by two scrollbars, allowing users to push visible con-
tent out of view, replacing it with off-screen content. When
using scrollbars, scrolling along either axis can be done
independently, but usually not simultaneously.
Some applications, such as Adobe Reader [2] and Google
Local [6], allow users to pan within the viewport. Panning,
typically performed with a mouse-down and drag, pushes
visible content out of the viewport in any direction, while
pulling previously hidden content into view. This works
well for short distances, but is limited in that the longest
dragging distance is equal to the diagonal of the rectangular
viewport. Some systems allow vector scrolling, where a
mouse or joystick is used to define a vector, indicating the
direction and speed of scrolling [17]. However, this re-
quires users to steer precisely in the desired scrolling direc-
tion, which is often difficult to do when the natural reading
direction for the content is not axis-aligned (e.g., consider a
multi-column, multi-page text document).
In this paper, we introduce content-aware scrolling (CAS),
which varies the direction, speed, and zoom during scroll-
ing, based on document content properties, as shown in

Figure 1. We then describe the design and implementation
of a document viewer that uses the CAS widget, allowing
the user to scroll along any path using traditional scrolling
gestures.

RELATED WORK

Augmenting and Replacing the Scrollbar

Some systems have augmented the scrollbar to provide
additional information about off-screen content. For exam-
ple, the bookmark scrollbar [19] provides bookmarks adja-
cent to the scrollbar, such that when the user drags within
the vicinity of a bookmark, it snaps to the nearest one. The
ScrollSearcher [11] indicates within the scrollbar the results
of a document search. The auditory-enhanced scrollbar [13]
uses non-speech sounds to help identify off-screen loca-
tions.
Others have developed alternative techniques intended to
outperform scrollbars, such as the Alphaslider [9], LensBar
[20], and FineSlider [21], which allow for quick visualiza-
tion through a large list of data items. Some researchers
have developed gestures that support scrolling in one [22,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted withoqut fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
UIST’06, October 15–18, 2006, Montreux, Switzerland.
Copyright 2006 ACM 1-59593-313-1/06/0010...$5.00.

Figure 1: Content-aware scrolling (CAS) allows
scrolling in document reading direction using CAS
widget (enlarged on right). Reading direction is
shown roughly as overlaid arrow, where black dots
indicate small unimportant region (traversed with dif-
ferent scroll distance mapping) and red dashes indi-
cate large unimportant region (traversed with anima-
tion). CAS window snapshots 1–4 on left correspond
to track locations on right, and are traversed in a sin-
gle scroll. Light blue knob indicates traditional knob
location (inactive during CAS) for current CAS knob
location (currently at position 4).

1

2

3

4

1

2

3

4

CAS button

CAS track

traditional
knob (inactive)

CAS knob
(active)

CAS button

155

24] or two [5, 17] dimensions, or have developed [17] and
analyzed [15] systems that automatically zoom while
scrolling in two dimensions. However, none of these sys-
tems allow the user to revisit a previously traversed path
without requiring them to duplicate the same (possibly
complex) set of scrolling gestures.

Hardware Interaction Devices

Hardware interaction devices have been created to scroll
across documents in both one [29] and two dimensions [3,
7]. However, unlike desktop and laptop computers, many
mobile devices (e.g., cell phones and PDAs) do not easily
accommodate additional hardware. Furthermore, these
interaction devices are not designed to allow the user to
easily revisit a previously traversed path.

Navigating Hypertext and 3D Environments

Some hypertext systems, such as Scripted Documents [28],
allow authors to create conditional and programmable paths
within and between online documents. There have also
been many systems developed to traverse a 3D path [18,
26, 27]. CAS builds upon the idea of these 3D path tra-
versal systems, following Galyean’s “river analogy” [16],
which proposes that a user is like a boat floating down a
river, being steered by the water current, but still able to
veer slightly off the path using the rudder. In CAS, the
default path can be determined automatically, based on the
content of the document, or manually by the user. To sup-
port user control while scrolling, we have applied this ap-
proach to an existing widget, the scrollbar, such that no
extra screen space is used and almost no additional training
is required to use it.

CONTENT-AWARE SCROLLING

CAS is built upon the concept of content-awareness, an
approach that takes into account various characteristics of a
document’s content to determine how the user interacts
with it. In other words, if the system knows something
about the data, it can help the user interact with it more
effectively. In CAS, when the user scrolls, content is not
treated as a single undifferentiated layer of information.
Instead, various properties are taken into account to iden-
tify important regions in which to vary the scroll direction,
speed, and zoom. This is a special case of what Smith and
Taivalsaari call “generalized scrolling” [25].

Varying Direction

CAS is useful in navigating to off-screen content, provided
that the CAS path is consistent with the user’s intended
scrolling direction, which can make the difference between
a pleasant and a frustrating user experience. We define the
flow of content as the path through which a user wishes to
view the content at a given time. For example, this can be
the reading direction of a text document, or the path
through the results of a text search, as shown in Figure 2.
Adobe Reader automatically infers the reading direction of
documents for both its “Read Out Loud” feature and third-
party screen readers to speak the text, as an accessibility
feature. We use this same reading direction.

The “reflow” feature of Adobe Reader takes a different
approach. To accommodate smaller displays, reflowing
reformats the content so that the user only needs to scroll
vertically. CAS takes a different approach by also recogniz-

ing the importance of the content’s intended layout, thus
allowing a user to view the content unmodified while only
needing a single scrollbar to traverse it, and potentially
giving CAS an advantage over reflow in spatial recognition
tasks.

Adobe Reader also supports reading “article threads,” al-
lowing a user to start reading on one page and continue on
a different page later in the document by pressing a key or
clicking within the document; this is a form of hypertext
that is limited to links within a single document. Further-
more, when reading an article, the page view zooms dis-
continuously, such that the line width of the content being
read fills the screen width, which may force a zoom level
that is inadequate for reading when the viewport is too
narrow. StyleCam [14] supports continuous 3D interaction,
allowing a user to control the speed and direction with
which they traverse a manually authored camera path. In
contrast, CAS affords manual control of automatically-
generated task-specific 2D document paths. Furthermore,
unlike article threads, CAS automatically extracts the read-
ing path, making it effective on documents that were not
authored with content-awareness in mind.

Identifying Important Regions. CAS identifies important
regions of a document to create a scrolling distance map-
ping between scrollbar and document pixels. For a reading
task (e.g., as shown in Figure 1), an important region is the
area whose width spans the left edge of the first character
to the right edge of the last character on a line and whose
height is the height of that line. Following the flow of con-
tent, these text-line–sized important regions coalesce into
contiguous stacks of rectangles with possibly varying
widths and heights. Since a path is continuous, the unim-
portant regions along the path are those parts of the docu-
ment that lie between the rectangles as encountered sequen-
tially along the path. For example, when the next line of
text is in a different column or on a different page, the
distance along the path that lies within unimportant regions
can be as large as thousands of pixels.

Varying Speed

We vary the scrolling speed based on the locations of im-
portant regions, in the spirit of the adaptive control/display

Figure 2: Path defined by flow of content can vary, de-
pending on task, as shown in (a) reading task, and (b)
text search task for “people” in same page. Solid and dot-
ted black parts of path indicate important and unimportant
regions, respectively. (Arrows and popouts are included
for purposes of illustration only.)

(a) (b)

156

ratio of [12]. The pixel distance that the CAS widget’s
knob is dragged (!dknob) is not uniformly mapped to the
pixel distance the document is scrolled (!ddoc), but rather,
is a function of the distance D to the next important region
relative to the size of the viewport, as shown in Figure 3.
For example, consider traversing a search results path
within a textual document, as shown in Figure 2. The con-
tinuous path traversed by the CAS widget may contain
many (possibly large) unimportant regions (i.e., ones that
have no search results). Therefore, we change the scroll
distance mapping through these regions (shown as dotted
parts of the path), despite a constant physical scrolling
gesture, decreasing the control/display ratio. For very large
distances (those larger than the viewport’s diagonal), the
viewport automatically flies to the next important region
using a “slow-in, slow-out” animated change in speed.

Varying Zoom

We vary the zoom level of the document based on the size
of and distance between important regions. The zoom level
is initially set at 200%; however, it may be reduced slightly
if the width of an important region (e.g., a paragraph of
text) cannot fit within the current viewport. Unlike Adobe
Reader’s article threads, we do not force fit if the zoom
level results in illegible content (we have informally found
that 150% is an acceptable lower bound for legibility of
most 10pt fonts on our 800!600 5" mobile display). For
very large distances between important regions, in combi-
nation with the variation in speed described above, we also
use a “slow-in, slow-out” animation change in zoom, simi-
lar to navigation in Pad++ [10]. Igarashi and Hinckley [17]
showed how varying the zoom level based on the user’s
scrolling speed can help maintain a constant visual flow,
even at high scrolling speeds. However, zooming may not
be suitable for some content, such as text, that is illegible at
low zoom values. Therefore, we only zoom through unim-
portant regions.

CAS WIDGET

The CAS widget looks and feels like a traditional scrollbar.
Consider, for example, how the CAS widget behaves when
its scroll path is mapped to the reading direction of a text
document, as shown in Figure 1. Dragging its knob along
its track scrolls the document continuously along the read-
ing path. Clicking the arrow buttons at each end advances
the document incrementally along the path. Clicking out-
side the knob on the track also advances the document
along the path one “page” at a time, such that the new win-
dow that is mapped to the viewport slightly overlaps the
old window, providing visual continuity. Mouse wheel

scrolling is also supported, which helps users maintain
precise control when traversing long CAS paths, especially
on small displays.

APPLICATION

We have built an application that uses the CAS widget to
support content-aware scrolling for different types of con-
tent. The CAS Document Viewer application is written
using the Java 5.0 SDK for cross-platform operation, and
supports both text-based PDF documents and JPG images.
The scrolling mode is initially set to “normal,” meaning the
CAS widget behaves like a traditional scrollbar. Conven-
tional mouse-down-and-drag panning and vector scrolling
are also supported.
A CAS path is constructed automatically by the system or
manually by the user, depending on the type of content, as
described below. To scroll along that path, the user must
first change the scrolling mode from “normal” to “CAS,”
through a menu option, a toolbar button, or temporary
depression of the “alt” modifier key. Upon enabling CAS
mode, if the current viewport does not show a part of the
document on the path, the viewer automatically pans the
document to the nearest path point. The vertical CAS wid-
get in this mode now traverses the custom path. If the
viewport is too narrow for a particular point along the path,
the horizontal CAS widget allows left-right scrolling span-
ning only the width of the content on the path. The docu-
ment orientation does not change along the path.
A user may wish to venture off the path temporarily, even-
tually returning to her last path location. We allow the user
to anchor her current path location by depressing the Shift
key. Extending the work on the bookmark scrollbar [19],
this creates an implicit bookmark, allowing the user to pan
and scroll freely until Shift is released. The viewer then
automatically springs back to the anchored location.

PDF Viewer

Upon opening a PDF document, we use the PDF text ex-
traction tool PDFBox [8] to automatically extract each
character, word, and line of text, along with their pixel
locations. A reading path is then automatically constructed
through the beginning of each line, aligned along the left
edge of the viewport.
An integrated search function finds and highlights all oc-
currences of a specified string. When searching, the CAS
widget follows the search path for that string until the
search function is cancelled or a new path is explicitly
chosen. A search path starts at the first string occurrence
(centered within the viewport), then pans directly to the
second occurrence, then to the third, and so on. If two con-
secutive occurrences are located sufficiently far apart,
scrolling is sped up and/or animated between those two
points, as described earlier.

Image Viewer

Our viewer also supports viewing photographs. Selecting
the menu item “View Faces” finds faces using the Betaface
face and eye detection web service [4]. A Hamiltonian path
is then automatically constructed through the center of each
face, creating a faces path that visits each face in the pho-
tograph exactly once.

distance D to next region of interest (pixels)

!
d

kn
ob

 /
!

d
do

c D2 = viewport diagonal:
“slow-in, slow-out”

animation
D1 = 0.5"viewport
diagonal: speed up

Figure 3: Variation of scrolling distance mapping
(!dknob/!ddoc) depends on proximity of nearby content in
relation to size of viewport. If nearest content on path
is substantially far away, viewer performs a “slow-in,
slow-out” animation to next region of interest.

157

Path Creation and Persistence

A CAS path consists of a sequence of nodes, each with a
location, zoom level, and dimensions of the content at that
point in the path. For content types whose paths are created
automatically (e.g., textual PDF documents), persistence is
not an issue, since the path is recreated every time the
document is opened. However, we also allow paths to
be created manually by the user using a simple path-editing
program (similar to CyberCoaster [23]) invoked from a
menu. For user-created paths to be persistent, we require
the document to be in JPEG image format (if not, we con-
vert it), and then store this path as metadata using Adobe
XMP [1]. If a file’s content has changed since the last path
was created, the user must explicitly edit the path or create
a new one using our path editor. If a document contains
multiple paths (e.g., both reading and search paths), all
paths are stored within the file’s metadata.

USER FEEDBACK AND FUTURE WORK

We have asked colleagues to informally try our CAS
document viewer to peruse PDF documents on both laptop
and handheld displays. Users say that they appreciate the
ability to read a document on a small display in its original
format using a one-dimensional gesture, such as a mouse
wheel scroll, or a single scrollbar arrow press. We note that
no one complained about stimulus-response incompatibility
(e.g., when dragging the knob down, the viewport can pan
up or sideways). We plan on improving CAS to recognize
additional types of content and search types (e.g., travers-
ing headings), and use spline paths. We are also designing a
user study to determine whether CAS has advantages over
traditional scrolling in reading and search tasks.

ACKNOWLEDGEMENTS

This research is funded in part by NSF Grant IIS-0121239,
Office of Naval Research Contract N00014-04-1-0005, and
a gift from Microsoft Research.

REFERENCES
[1] Adobe Extensible Metadata Platform (XMP),

http://www.adobe.com/products/xmp/.
[2] Adobe Reader,

http://www.adobe.com/products/acrobat/readstep2.html.
[3] Apple Computer / Mighty Mouse,

http://www.apple.com/mightymouse/.
[4] Betaface Web Service, http://www.betaface.com/.
[5] Google Earth, http://earth.google.com.
[6] Google Local, http://local.google.com.

[7] Microsoft Mouse and Keyboard Products,
http://www.microsoft.com/hardware/mouseandkeyboard/fea
tures/tiltwheel.mspx.

[8] PDFBox - Java PDF Library, http://www.pdfbox.org.
[9] Ahlberg, C. and Shneiderman, B., "The alphaslider: a com-

pact and rapid selector," Proc. CHI '94, pp. 365–371.
[10] Bederson, B. B., Hollan, J. D., Perlin, K., Meyer, J., Bacon,

D. and Furnas, G., "Pad++: A Zoomable Graphical Sketch-
pad For Exploring Alternate Interface Physics," Journal of
Visual Languages and Computing (1996), 7, pp. 3–31.

[11] Björk, S., "The ScrollSearcher Technique: Using Scrollbars
to Explore Search Results," Proc. INTERACT 2001, Tokyo,
Japan, July 9–13.

[12] Blanch, R., Guiard, Y. and Beaudouin-Lafon, M., "Semantic
Pointing: Improving Target Acquisition with Control-
Display Ratio Adaptation," Proc. CHI 2004, pp. 519—526.

[13] Brewster, S. A., Wright, P. C. and Edwards, A. D. N., "The
Design and Evaluation of an Auditory-Enhanced ScrollBar,"
Proc. CHI 1994, Boston, Massachusetts, April 24–28, 1994,
pp. 173–179.

[14] Burtnyk, N., Khan, A., Fitzmaurice, G., Balakrishnan, R.
and Kurtenbach, G., "StyleCam: Interactive Stylized 3D
Navigation using Integrated Spatial & Temporal Controls,"
Proc. UIST 2002.

[15] Cockburn, A., Savage, J. and Wallace, A., "Tuning and
Testing Scrolling Interfaces that Automatically Zoom,"
Proc. CHI 2005, Portland, Oregon, April 2–7, 2005, pp. 71–
80.

[16] Galyean, T. A., "Guided Navigation of Virtual Environ-
ments," Proc. I3D 1995, Monterey, CA, 1995, pp. 103–104.

[17] Igarashi, T. and Hinckley, K., "Speed-dependent Automatic
Zooming for Browsing Large Documents," Proc. UIST
2000, San Diego, CA, 2000, pp. 139–148.

[18] Khan, A., Komalo, B., Stam, J., Fitzmaurice, G. and Kur-
tenbach, G., "HoverCam: Interactive 3D Navigation for
Proximal Object Inspection," Proc. I3D 2005, Washington,
D.C., April 3–6, 2005, pp. 73–80.

[19] Laakso, S. A., Laakso, K.-P. and Saura, A. J., "Improved
Scroll Bars," Proc. CHI 2000, April 1–6, 2000, pp. 97–98.

[20] Masui, T., "LensBar - Visualization for Browsing and Filter-
ing Large Lists of Data," Proc. InfoVis '98, 1998, pp. 113–
120.

[21] Masui, T., Kashiwagi, K. and Borden, G. R., "Elastic
graphical interfaces for precise data manipulation," Proc.
CHI '95 Conference Companion, 1995, pp. 143–144.

[22] Moscovich, T. and Hughes, J. F., "Navigating Documents
with the Virtual Scroll Ring," Proc. UIST 2004, Santa Fe,
NM, October 24–27, 2004, pp. 57–60.

[23] Satou, T., Kojima, H., Akutso, A. and Tonomura, Y., "Cy-
berCoaster: Polygonal Line Shaped Slider Interface to Spa-
tio-Temporal Media," Proc. ACM Multimedia, Orlando, FL,
October 1999, p. 202.

[24] Smith, G. M. and schraefel, m. c., "The Radial Scroll Tool:
Scrolling Support for Stylus- or Touch-Based Document
Navigation," Proc. UIST 2004, Santa Fe, NM, October 24–
27, 2004, pp. 53–56.

[25] Smith, R. and Taivalsaari, A., "Generalized and stationary
scrolling," Proc. UIST 1999, Asheville, NC, pp. 1–9.

[26] Tan, D. S., Robertson, G. G. and Czerwinski, M., "Explor-
ing 3D Navigation: Combining Speed-coupled Flying with
Orbiting," Proc. CHI 2001, Seattle, WA, pp. 418–425.

[27] Zeleznik, R. and Forsberg, A., "UniCam - 2D Gestural
Camera Controls for 3D Environments," Proc. I3D 1999,
Atlanta, GA, pp. 169–173.

[28] Zellweger, P. T., "Scripted Documents: A Hypermedia Path
Mechanism," Proc. Hypertext 1989, November 1989.

[29] Zhai, S., Smith, B. A. and Selker, T., "Improving browser
performance: A study of four input devices for scrolling and
pointing tasks," Proc. INTERACT '97, pp. 286–292.

Figure 4: “Find Faces” option in Image Viewer creates a
Hamiltonian path through each face of a photograph.
Scrolling with CAS widget follows this path (as shown
by the arrow).

158

