
Interacting with Hidden Content Using Content-Aware
Free-Space Transparency

Edward W. Ishak Steven K. Feiner
Columbia University, Department of Computer Science

New York, NY 10027
Email: {ishak, feiner}@cs.columbia.edu

ABSTRACT
We present content-aware free-space transparency, an ap-
proach to viewing and manipulating the otherwise hidden
content of obscured windows through unimportant regions
of overlapping windows. Traditional approaches to interact-
ing with otherwise obscured content in a window system
render an entire window uniformly transparent. In contrast,
content-aware free-space transparency uses opaque-to-
transparent gradients and image-processing filters to mini-
mize the interference from overlapping material, based on
properties of that material. By increasing the amount of si-
multaneously visible content and allowing basic interaction
with otherwise obscured content, without modifying win-
dow geometry, we believe that free-space transparency has
the potential to improve user productivity.

Categories and Subject Descriptors: H.5.2 [Information
Interfaces and Presentation]: User Interfaces—Graphical
user interfaces (GUI), Interaction styles, Screen design,
Windowing systems

General Terms: Human Factors, Design

Additional Keywords and Phrases: Transparency, screen
space, interaction techniques, content disambiguation, space
management, pie menu

1. INTRODUCTION
To view or interact with the content of an obscured window
in conventional window managers, users are often forced to
resize or move the obscuring window, or bring the obscured
window to the top. To avoid this problem, users sometimes
resort to using window managers that automatically cascade
or tile each window without regard to its content [5]. How-
ever, this is undesirable when certain windows need to dis-
play more content than others or require particular aspect
ratios. Free-space transparency [11] allows a user to make
efficient use of screen space by rendering unimportant win-
dow regions transparent and important window regions
opaque, with a smooth gradient between them. In this paper,
we extend this work to introduce content-aware free-space
transparency (FST), which takes into consideration various
characteristics of the obscured and overlaid content and ap-
plies image-processing filters and gradients to further reduce
content ambiguity [12]. This guarantees that the important
content of overlaid windows will be readable at all times,
while simultaneously exposing hidden content beneath the
unimportant regions.

We also present a set of interaction techniques that utilize
the benefits of FST. The pop-though technique allows a user
to interact with content beneath unimportant regions of an
obscuring window without moving or resizing it. The focus
filter allows a user to temporarily transform a filtered por-
tion of obscured content to its original unfiltered form,
which clarifies the exposed content beneath an obscuring
window. Finally, since any pixel may render information
from multiple windows, we allow users to determine the
window with which they will interact by using the mouse-
over pie menu.

2. RELATED WORK
To increase the amount of simultaneously visible content,
some systems have tried rendering the entire obscuring win-
dow semi-transparently [1,2,7,13,14]. This traditional use of
semi-transparency (accomplished by uniformly alpha blend-
ing the window with the contents of the frame buffer behind
it), allows a user to visualize content that is behind an ob-
structing window, but often makes it difficult to determine
visually which content belongs to which window. Multi-
blending [4] addresses this issue when interacting with an
application’s palette windows in visual workspaces. Al-
though multiblending preserves the visibility of both back-
ground and foreground windows containing familiar con-
tents, users may have difficulty understanding unfamiliar
overlapping contents. Users may also have difficulty with
similar appearing overlapping contents, especially text. FST
takes a different approach by selectively rendering every
important region opaque. By preventing obscured content
from showing through those important regions, FST in-
creases the legibility of even unfamiliar overlapping infor-
mation.

In Macintosh OS X [3], a text-only terminal window can
have an opaque text color rendered on a semi-transparent
background color. The Macintosh Command-Tab menu uses
the same approach, rendering opaque icons on a transparent

Figure 1: Window rendered (left) without free-
space transparency, and (right) with content-aware
free-space transparency, exposing blurred hidden
content underneath.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are

not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee.
UIST '04, October 24-27, 2004, Santa Fe, New Mexico, USA.
Copyright 2004 ACM 1-58113-957-8/04/0010...$5.00. 185

189Volume 6, Issue 2

background. Although this approach may produce more
legible overlaid content than does uniform semi-
transparency, content ambiguity can still arise when ob-
scured pixels are blended with background pixels that lie in
between the pixels of overlaid content, especially when the
obscured pixels are from content of the same type as the
overlaid region (e.g., text, in the case of the Macintosh ter-
minal window). FST generalizes the Macintosh approach by
rendering the content pixels, as well as those in the back-
ground on which the content lies, opaque, making the con-
tent more legible, as shown in Figure 2.

3. FST OVERVIEW
FST allows a window’s application to inform the rendering
engine of the unimportant regions, as we have done in the
implementation described in Section 4. It evaluates and
compares content characteristics, such as type (text, images,
icons, or a combination), colors, and spatial frequency of
both the obscuring and hidden window content. Based on
the combinations of these characteristics, image-processing
filters, such as Gaussian blur [4] or desaturation, alone or in
combination, are applied to the content exposed through the
unimportant regions of the obscuring window. Additionally,
gradients are applied between the opaque and transparent
regions.

Although many approaches allow visualization of overlaid
content, they rarely allow interaction with the obscured con-
tent (with the Task Gallery [15] as a notable exception). One
reason may be that with uniform semi-transparency, disam-
biguating obscuring content from hidden content can be
hard, making user interaction with hidden content difficult.
With full opacity, each pixel represents part of at most one
window, and therefore, interaction with that pixel is unam-
biguous as to the selected window. In contrast with uniform
semi-transparency, each pixel is a blended representation of
any number of windows and background; therefore, what is
being manipulated at a particular pixel can be ambiguous
when a user wishes to interact with a window underneath
the top-most window. Since FST does not allow important
window regions to be rendered semi-transparently, each
pixel on the screen represents an important region from at
most one window. This facilitates unambiguous interaction
with all visible window content, even if it is visible through
one or more unimportant window regions.

4. FST IMPLEMENTATION
A key issue in implementing FST, discussed below, is to
identify the important and unimportant regions of a window.
This determines which regions of that window are to be ren-

dered opaque and which are to be rendered transparent.
When rendering the gradient between these regions, it is de-
sirable that the opaque-to-transparent transition be made
smooth and visually appealing, since an abrupt boundary
could imply a separation of the opaque and transparent sec-
tions, leading the user to believe that one window is actually
divided into multiple objects. We render no pixel 100%
transparent, since it would completely expose the content
underneath, potentially misleading the user into believing
that this content was associated with the overlaid window.
We have found that a 75% transparency value works well.
We have also found that rendering important regions with a
10% transparency (90% opacity) value allows for some
visualization beneath overlaid content, with little risk of
content ambiguity; this supports earlier evaluations of us-
able and efficient transparent user interfaces, such as in the
Stroop Experiment [9,10].

Since users often interact with window decoration (title bar,
menus, border, scroll bars), we consider this important con-
tent. Therefore, FST does not affect the pixels that make up
these regions, and consequently, considers only the window
body when classifying important and unimportant regions.
In the case of opaque windows, keeping the window decora-
tion opaque allows users to disambiguate window bounda-
ries more easily, as in the Macintosh terminal window men-
tioned above. Inherently transparent windows maintain their
transparent window decoration, while the gradient between
important and unimportant regions transitions from the win-
dow's inherent alpha value to a more transparent value.

4.1. Important vs. Unimportant Regions
We have considered several approaches to determining im-
portant and unimportant regions in an FST window. In one
approach, the rendering engine can classify window regions
containing only a particular background color or texture as
unimportant. Alternatively, the user could explicitly identify
unimportant regions manually with a mouse or touchpad, or
automatically by using an eye tracker to detect window re-
gions on which their gaze does not dwell. Regions contain-
ing white space (i.e., ones devoid of text, icons, and images)
can also be automatically classified as unimportant, as in our
implementation. However, since some applications utilize
white space (e.g., displaying page margins in a document),
we allow the window’s application to notify the rendering
engine of these unimportant regions. This may require the
application designer to provide a bitmap of alpha values, or
simply specify a set of geometric bounds with characteriza-
tions of their contents, as in our testbed application.

4.2. Classifying Content
An FST window takes into account characteristics of both
its own content and that of the windows it obscures to de-
termine a gradient and transparent filter combination that
will promote efficient use of screen space, and unambiguous
visualization of the overlapped data.

4.2.1. Content-Dependent Transparency Filters. Using tradi-
tional, unconditional whole-window blending, certain win-
dow layout arrangements make it difficult for the user to
correctly associate overlaid content with the window in
which it resides. In our implementation, we evaluate over-
lapping window contents to apply the most suitable filters.
For example, in comparing overlaid versus obscured con-
tents, if the types are both text or both image, we find that

Figure 2: Window rendered (left) with opaque text
on transparent background (alpha = 0.5), and (right)
using FST, where background pixels of important
regions are rendered opaque, producing more legi-
ble overlaid content.

190

using a Gaussian blur (radius=3) is sufficient for content
disambiguation. When both types are icons (or thumbnail
images), we find that using desaturation followed by a
Gaussian blur (radius=5) is less ambiguous than the Gaus-
sian blur alone. This is because icons (or thumbnails) can
have arbitrary shapes and locations within both the overlaid
and obscured windows, sometimes making it difficult to as-
sociate the icons with the window in which they reside. Text
and images, on the other hand, tend to be more structured
and less freeform in their locations and dimensions. Figure 3
illustrates the conditions under which we apply different im-
age-processing filters to hidden content.

Overlaid Content Obscured Content

Type Color Freq. Type Color Freq.

Filter(s) Ap-
plied to Ob-
scured Con-

tent
text Cx NC text CY NC Blur (r=3)

text Cx NC text Cx NC Desat,
Blur (r=5)

not
icons NC NC NC NC high Desat,

Blur (r=5)
not

icons NC NC NC NC low Blur (r=3)

icons NC NC icons NC NC Desat,
Blur (r=5)

icons NC NC not
icons NC high Desat,

Blur (r=5)

icons NC NC not
icons NC low Blur (r=3)

4.2.2. Content-Dependent Gradients. FST considers several
gradients varying in slope and distance and uses the appro-
priate one based on characteristics of the overlapping con-
tent. We tried both linear and exponential gradients, and
found that an exponential gradient works well. Using a 2D
isosurfaces equation, for each pixel (px, py), a scalar value s
is computed as a weighted sum (ssum) of N intermediate
scalars si, each computed relative to one of N objects with
location (Xi, Yi) in the window, added to the weighted sca-
lar maximum, smax, for that pixel. Adding a weighted smax
allows a pixel closer to an object of content to have a higher
overall scalar value than another pixel with an equal ssum
value. We tested many different weights, and values of 0.3
and 0.7 for smax and ssum, respectively, seemed to produce
the most aesthetically pleasing results. Objects can vary
from an icon to a block of text and can have arbitrary di-
mensions. The scalar value s for each pixel is computed as:

s = (0.3)smax + (0.7)ssum ,

where ssum =
si

di=1

N

 and si = e
5 px X i()

2
+ py Yi()

2

.

We experimented with exponent values, and have found that
–5 works reasonably well, although all real numbers we
have tried, ranging from –3 to –7, produce acceptable re-
sults. The variable d is the desired gradient distance from
opaque to transparent pixels. Pixels containing scalar values
of 1.0 or above are rendered opaque, 0.0 is rendered trans-
parent, and intermediate values are rendered with a propor-
tional opacity. The amount of otherwise hidden content re-
vealed through overlaid windows depends on the combina-

tion of the d value and how small and widely interspersed
the unimportant regions are. For example, a large d value
with many small, interspersed regions will reveal little hid-
den content.

5. DEMO APPLICATION
To test our ideas, we have developed a Java application that
allows users to visualize archaeological data within tradi-
tional 2D rectangular windows. Users can view images,
thumbnails, and text pertaining to objects excavated from a
dig site. Regardless of content type, every window can be
moved and resized. Icon windows allow adding, deleting,
and moving thumbnails and icons to dynamically create and
destroy important regions. Users can specify whether to ren-
der the windows using content-aware FST, traditional uni-
form semi-transparency, or no transparency at all. To im-
prove performance, image-processing techniques are not ap-
plied to content while windows are being resized or moved.
Running on an Apple Powermac G5 desktop (dual 2GHz,
1GB RAM), basic moving and resizing of windows operate
at about 15–20 fps without the use of filters, but less than 1
fps with filters. We foresee these numbers improving with
faster hardware and the use of hardware-accelerated image
processing.

6. INTERACTION WITH FST
With content-aware FST, a user can view more content si-
multaneously and unambiguously. To further increase the
usefulness of our approach, we have developed techniques
that allow a user to interact with and manipulate any visible
content, using either a touchpad or a standard two-button
mouse.

6.1. Pop-Through
We allow a user to manipulate content beneath transparent
regions of obscuring windows through the use of the pop-
through interaction technique, which allows a user to use
pressure to interact with an obscured window [16,17]. In our
implementation on a MERL DiamondTouch table [8], the
user can apply pressure to the unimportant regions of an ob-
scuring window to allow a hidden window directly under-
neath the obscuring window to “pop through” and become
focused and fully unobstructed. We are currently expanding
this approach to detect several pressure thresholds, allowing
windows at various layers, proportional to the pressure ap-
plied, to “pop through” the topmost window. Currently,
when using a non-pressure-sensitive input device, such as a
standard two-button mouse, a user invokes a pop-through
with a left button mouse-down and half-second delay.

6.2. Focus Filter
The use of various image-processing filters for content dis-
ambiguation may, at times, make content illegible through
the unimportant regions of an overlaid window. We provide
a technique that permits a user to temporarily view filtered
content in its unfiltered form. Applying the focus filter
causes image-processed content underneath the overlaid
window to be restored to its original unfiltered form, as
shown in Figure 4, acting as a “magic lens” [6]. In our im-
plementation, content within a fixed radius around the point-
of-interest is restored; we have found that a 100-pixel radius
provides adequate coverage. The focus filter can be ex-
tended to use a touchpad and to correlate higher pressure
with larger large radii. Currently, when using a standard
two-button mouse, holding down the right button, followed
by a left button click, invokes the focus filter. At this point,

Figure 3: Table showing the image-processing filters
applied to obscured content, based on characteris-
tics of both the overlaid and obscured contents. CX
and CY represent arbitrary colors. NC signifies “not
considered.”

191Volume 6, Issue 2

dragging the right button moves the focus filter appropri-
ately. Our implementation of the focus filter operates at
about 10 fps.

6.3. Mouse-Over Pie Menu
When using many windows, a user may wish to interact
with a window at an arbitrary depth. Techniques such as
pop-through and focus filter facilitate interaction with win-
dows directly underneath the top-most window; however,
they make it cumbersome to interact with any other window
when using a standard two-button mouse. We provide a
mouse-over pie menu to allow a user to determine with
which window to interact at any level. Using a two-button
mouse, a user can invoke the mouse-over pie menu by hold-
ing down the left mouse button, and then clicking the right
mouse button on the pixel representing blended (and possi-
bly image-processed) content from more than one window.
A pie menu appears with choices containing thumbnail rep-
resentations of all the windows that lie beneath that selected
pixel. A user can then left mouse click on the thumbnail rep-
resentation of the window with which she wishes to interact.

7. ADDITIONAL BENEFITS OF FST
FST provides additional benefits in certain window layout
scenarios. The use of a gradient between important and un-
important window regions allows one to infer the approxi-
mate distance from almost any pixel within a window to im-
portant content in that same window, and possibly even to
off-screen content [3], or to content not contained within the
current bounds of the window (e.g., when the user must
scroll to visualize content). Additionally, with the use of
shorter, less fluid gradients, a spatial grouping of objects can
be visually reinforced through the isosurface property of
FST. Finally, by knowing which regions of windows are
unimportant, one could use space management [5] to place
information not only in totally free screen space, but also in
unimportant window regions.

8. DISCUSSION AND FUTURE WORK
Using our demo application in informal studies, several us-
ers, commenting about FST, stated they thought they would
benefit from visualizing and interacting with hidden content
if working with limited screen space. Compared to uniform
semi-transparency, they found that FST decreased the ambi-
guity of content within its containing window. Some did not
see the benefit in rendering small unimportant regions trans-
parent, saying it was somewhat distracting, and would be
advantageous only if large unimportant regions were treated.

Additionally, some users did not see the need to visualize or
interact with content that was arbitrarily deep, stating that
visualization of two to three layers of window content was
sufficient. We will be conducting user studies to determine
whether FST allows users to disambiguate content faster,
and whether it improves their ability to perform certain win-
dow manipulation tasks. We also plan on experimenting
with different ways to identify important regions, such as
detecting high mouse activity, or monitoring a user’s gaze
through eye tracking. Finally, we will explore additional
ways to classify content, by considering additional material
properties, as well as by using vision-based techniques.

ACKNOWLEDGMENTS
We wish to thank Lawrence Wang for his work on Dia-
mondTouch code. This research is funded in part by NSF
Grant IIS-0121239, Office of Naval Research Contract
N00014-04-1-0005, and gifts from Microsoft Research and
Mitsubishi Electric Research Laboratory.

VIDEO
The techniques presented in this paper can be previewed in a
digital video available for download from
www.cs.columbia.edu/graphics/projects/FST.

REFERENCES
[1] ActualTools Corporation. Actual Transparent Windows,

www.actualtools.com/transparentwindows/
[2] Apple Computer/ Mac OS X Terminal Window,

www.apple.com/macosx/features/unix/
[3] Baudisch, P. and Rosenholtz, R. “Halo: A technique for visualizing off-

screen locations.” Proc. CHI 2003, Ft. Lauderdale, FL, Apr. 5–10, 2003,
481–488.

[4] Baudisch, P. and Gutwin, C. “Multiblending: Displaying overlapping
windows simultaneously without the drawbacks of alpha blending,”
Proc. CHI 2004, Vienna, Austria, Apr. 24–29, 2004, 367–374.

[5] Bell, B., and Feiner, S. “Dynamic space management for user inter-
faces.” Proc. UIST 2000, New York, NY, Nov. 2000, 239–248.

[6] Bier, E., Stone, M., Pier, K., Buxton, W., and DeRose, T. “Toolglass
and magic lenses: The see through interface.” Proc. SIGGRAPH 1993,
Anaheim, CA, Aug. 1993, 73–80.

[7] Colby, G., and Scholl, L. “Transparency and blur as selective cues for
complex visual information,” Proc. SPIE Vol. 1460, Image Handling
and Reproduction Systems Integration, Mar. 1991, 114-125.

[8] Dietz, P. and Lehigh, D. “DiamondTouch: A multi-user touch technol-
ogy.” Proc. UIST 2001, Orlando, FL, Nov. 2001, 219–226.

[9] Harrison, B.L., Ishii, H., Vicente, K., and Buxton, W. “Transparent lay-
ered user interfaces: An evaluation of display design space to enhance
focused and divided attention.” Proc. CHI 1995, 317–324.

[10] Harrison, B.L., Kurtenbach, G., and Vicente, K. “An experimental
evaluation of transparent user interface tools and information content.”
Proc. UIST 1995, Pittsburgh, PA, 1995, 81–90.

[11] Ishak, E. and Feiner, S. “Free-space transparency: Exposing hidden con-
tent through unimportant screen space” [poster], Conf. Supplement,
UIST 2003, Vancouver, B.C., Canada, Nov. 2–5, 2003, 75–76.

[12] Kosara, R., Miksch, S., and Hauser, H. “Semantic depth of field.” Proc.
IEEE InfoVis 2001, San Diego, CA, USA, Oct. 2001, 97–104.

[13] Lieberman, H. “Powers of ten thousand: Navigating in large information
spaces.” Proc. UIST 1994, Marina del Rey, CA, Nov. 2–4, 1994, 15–16.

[14] NVIDIA nView Technology, Advanced Window and Menu Effects,
www.nvidia.com/object/LO_20020201_6041.htm

[15] Robertson, G., van Dantzich, M., Robbins, D., Czerwinski, M., Hinck-
ley, K., Risden, K., Thiel, D., and Gorokhovsky, V. “The task gallery: A
3D window manager.” Proc CHI 2000, New York, NY, Nov. 2000,
494–501.

[16] Zeleznik, R., Miller, T., and Forsberg, A. “Pop through mouse button
interactions.” Proc. UIST 2001, Orlando, FL, Nov., 2001, 195–196.

[17] Zeleznik, R., LaViola, J., Acevedo, F., and Keefe, D. “Pop through but-
ton devices for VE navigation and interaction,” Proc. IEEE Virtual Re-
ality, 2002, 127–134.

Figure 4: The focus filter allows a user to temporar-
ily restore an image-processed portion of obscured
content to its original form for increased legibility.
Here, using the mouse, the user temporarily fo-
cuses on part of a blurred, obscured image of a pot.

192

